zstu 4245 KI的斐波那契(dfs)

本文介绍了一种基于斐波那契数列的字符串生成方式,并提供了解决方案来确定特定位置的字符,通过递归算法高效地解决了复杂度较高的查询问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

----------------------------------------------------传送门----------------------------------------------------

Description

KI十分喜欢美丽而优雅的斐波那契数列,最近他新认识了一种斐波那契字符串,定义如下

f (0) = b, f (1) = a,

f (2) = f (1) + f (0) = ab,

f (3) = f (2) + f (1) = aba,

f (4) = f (3) + f (2) = abaab,

......

KI想知道 f (n) 中的第 m 位是什么,你可以帮他解决这个问题吗?

Input

第一行有一个整数 T ,表示测试组数。

接下来的每个测试组包含两个数 n, m 。

数据范围: T≤ 1000, 0 ≤ n ≤ 90, 1≤ m ≤ 1e18

Output

对于每个测试组,输出’a’或者’b’

Sample Input

54 15 310 2222 23366 2333333333333
思路:我们考虑到第n个字符串由第n-1个字符串个第n-2个字符串相加得到,如果我们要找第m个字符,m<=fib[n-1]的话,我们就可以转成求第n-1个字符串的第m个字符,否则,就转换成求第n-2个字符串的第m-fib[a-1]个字符

AC代码:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll f[100];
void dfs(int n, ll m)
{
    if(n == 0) {puts("b"); return;}
    if(n == 1) {puts("a"); return;}
    if(m <= f[n-1]) dfs(n-1, m);
    else dfs(n-2,m-f[n-1]);
}
int main()
{
    int t, n; ll m;
    f[0] = 1; f[1] = 1;
    for(int i = 2; i < 100; i++)
        f[i] = f[i-1] + f[i-2];
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%lld",&n,&m);
        dfs(n, m);
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值