哈尔滨理工大学软件与微电子学院第八届程序设计竞赛同步赛(高年级)F-小乐乐下象棋(记忆化搜索)

本文探讨了骑士周游问题的解决方案,采用记忆化搜索与动态规划(DP)方法,避免重复计算,有效求解从任意起点到指定终点的所有路径数量。代码示例使用C++实现,通过8个可能的移动方向遍历棋盘,最终返回到达目标位置的路径总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://ac.nowcoder.com/acm/contest/301/F

思路:记忆化搜索(DFS)dp[ x ][ y ][ s ] 代表第 s 步 走到 x y 的方案数。搜索的时候记录状态,避免不必要的重复搜索。

#include <bits/stdc++.h>
#define maxn 205
#define ll long long
const int mod = 1000000007;
using namespace std;
ll dp[maxn][maxn][maxn];
int dir[8][2] = {1,2, 1,-2, -1,2, -1,-2, 2,1, 2,-1, -2,-1, -2,1};
int n,m,k;
 
bool Check(int x,int y)
{
    if(x >= 0 && x < n && y >= 0 && y < m)return true;
    return false;
}
 
int dfs(int x,int y,int step)
{
    if(dp[x][y][step] != -1) return dp[x][y][step];
    if(step == k)
    {
        if(x == n - 1 && y == m - 1) return 1;
        else return 0;
    }
    ll sum = 0;
    for(int i = 0; i < 8; i++)
    {
        int tx = x + dir[i][0];
        int ty = y + dir[i][1];
        if(Check(tx, ty))
        {
            sum += dfs(tx, ty, step + 1);
            sum %= mod;
        }
    }
    dp[x][y][step] = sum;
    return sum;
}
 
int main()
{
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        memset(dp,-1,sizeof(dp));
        ll ans = dfs(0,0,0);
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值