题目链接:https://ac.nowcoder.com/acm/contest/373/C
思路:把每个地点看作一个点,那么每个点一定有且仅有一条有向出边。每个点出度只有1,如果某些点组成了一个有向环,这个环上所有点不会有额外的出边,即这个环一定是一个简单环。也易证每个点最终都会走向一个环。
结论:单独看待每个联通块,每个连通块一定有且只有一个环,只要在这个环上任何一个点建立哨卡,就能抓到这个联通块中的所有。可以使用把边都看成无向,使用并查集、搜索等找出所有连通块并求每个连通块上所有点的数量之和,从大到小排序,取前m大即可。复杂度O(nlogn)。记得开long long。
dfs代码:
#include <bits/stdc++.h>
#define ll long long
const int N = 1e5+7;
using namespace std;
ll n, m, x, sum;
ll a[N], p[N], fa[N];
ll vis[N];
vector <ll> G[N];
void dfs(ll x)
{
sum += a[x];
vis[x] = 1;
for(int i = 0; i < G[x].size(); i++)
if(!vis[G[x][i]]) dfs(G[x][i]);
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
for(int i = 1; i <= n; i++)
{
scanf("%lld",&x);
G[x].push_back(i);
G[i].push_back(x);
}
ll k = 0;
for(int i = 1; i <= n; i++)
{
if(vis[i]) continue;
sum = 0; dfs(i);
fa[k++] = sum;
}
sort(fa, fa + k);
ll cnt = 0;
for(int i = k - 1; i >= 0 && m > 0; i--)
cnt += fa[i], m --;
printf("%lld\n",cnt);
return 0;
}
并查集代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+7;
#define ll long long
ll a[N], fa[N], v[N];
int Find(int x)
{
if(x == fa[x]) return x;
return fa[x] = Find(fa[x]);
}
void join(int x,int y)
{
int tx = Find(x), ty = Find(y);
if(tx != ty) fa[tx] = ty;
}
int main()
{
int n, m, x;
scanf("%d%d",&n, &m);
for(int i = 1; i <= n; i++) scanf("%lld",&a[i]);
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i=1;i<=n;i++)
scanf("%d",&x), join(i,x);
ll ans = 0;
for(int i = 1; i <= n; i++) v[Find(i)] += a[i];
sort(v+1, v+1+n);
for(int i = 1; i <= m; i++)
ans += v[n-i+1];
printf("%lld\n",ans);
return 0;
}