牛客练习赛41-C-抓捕盗窃犯(dfs or 并查集)

本文深入解析了NOIP竞赛中的题目类型和赛制特点,通过实例讲解了如何运用图论、并查集和深度优先搜索等算法解决竞赛中的问题。文章详细介绍了如何寻找连通块、求解环路,并给出了具体的代码实现,帮助参赛者提升解题效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://ac.nowcoder.com/acm/contest/373/C

思路:把每个地点看作一个点,那么每个点一定有且仅有一条有向出边。每个点出度只有1,如果某些点组成了一个有向环,这个环上所有点不会有额外的出边,即这个环一定是一个简单环。也易证每个点最终都会走向一个环。
结论:单独看待每个联通块,每个连通块一定有且只有一个环,只要在这个环上任何一个点建立哨卡,就能抓到这个联通块中的所有。可以使用把边都看成无向,使用并查集、搜索等找出所有连通块并求每个连通块上所有点的数量之和,从大到小排序,取前m大即可。复杂度O(nlogn)。记得开long long。

dfs代码:

#include <bits/stdc++.h>
#define ll long long
const int N = 1e5+7;
using namespace std;
ll n, m, x, sum;
ll a[N], p[N], fa[N];
ll vis[N];
vector <ll> G[N];

void dfs(ll x)
{
    sum += a[x];
    vis[x] = 1;
    for(int i = 0; i < G[x].size(); i++)
        if(!vis[G[x][i]]) dfs(G[x][i]);
}

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i++)
        scanf("%d",&a[i]);
    for(int i = 1; i <= n; i++)
    {
        scanf("%lld",&x);
        G[x].push_back(i);
        G[i].push_back(x);
    }
    ll k = 0;
    for(int i = 1; i <= n; i++)
    {
        if(vis[i]) continue;
        sum = 0; dfs(i);
        fa[k++] = sum;
    }
    sort(fa, fa + k);
    ll cnt = 0;
    for(int i = k - 1; i >= 0 && m > 0; i--)
        cnt += fa[i], m --;
    printf("%lld\n",cnt);
    return 0;
}

并查集代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+7;
#define ll long long
ll a[N], fa[N], v[N];
int Find(int x)
{
    if(x == fa[x]) return x;
    return fa[x] = Find(fa[x]);
}
void join(int x,int y)
{
    int tx = Find(x), ty = Find(y);
    if(tx != ty) fa[tx] = ty;
}
int main()
{
    int n, m, x;
    scanf("%d%d",&n, &m);
    for(int i = 1; i <= n; i++) scanf("%lld",&a[i]);
    for(int i = 1; i <= n; i++) fa[i] = i;
    for(int i=1;i<=n;i++)
        scanf("%d",&x), join(i,x);
    ll ans = 0;
    for(int i = 1; i <= n; i++) v[Find(i)] += a[i];
    sort(v+1, v+1+n);
    for(int i = 1; i <= m; i++)
        ans += v[n-i+1];
    printf("%lld\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值