HDU - 1142 - A Walk Through the Forest(dijkstra + 记忆化搜索)

本文介绍了一种结合最短路径算法与记忆化搜索解决特定路径计数问题的方法。通过从终点反向计算每个节点的最短路径,再利用记忆化搜索遍历所有符合条件的路径,最终得出从起点到终点的路径数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142

题意:假设A和B是相连的,当前在A处,如果B到终点的距离小于A到终点的距离,则可以从A通往B处,问满足这种的条件的路径条数。

思路:从终点出发求每一个点的最短路,然后那些最短路的值记录起来,作为能否通过的判断条件。最后用记忆化搜索来搜索出一共多少条符合要求的路。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5;
#define inf 0x3f3f3f3f
#define pii pair<int, int>
int n, m, s, t;
int d[maxn], vis[maxn], path[maxn];
vector<pii>E[maxn];
void init()
{
    for(int i = 0; i <= n; i++) E[i].clear();
    memset(d,0x3f,sizeof(d));
    memset(vis,0,sizeof(vis));
    memset(path,0,sizeof(path));
}
void Dijkstra()
{
    d[s] = 0;
    priority_queue< pii > Q;
    Q.push({-d[s],s});
    while(!Q.empty())
    {
        int now = Q.top().second;
        Q.pop(); if(vis[now]) continue;
        vis[now] = 1;
        for(int j = 0; j < E[now].size(); j++)
        {
            int v = E[now][j].first;
            if(!vis[v] && d[v] > d[now]+E[now][j].second)
            {
                d[v] = d[now]+E[now][j].second;
                Q.push({-d[v],v});
            }
        }
    }
}
int dfs(int now)
{
    int i;
    if(now == 2) return 1;
    if(path[now]) return path[now];
    for(i = 0; i < E[now].size(); i++)
    {
        int v = E[now][i].first;
        if(d[now] > d[v])
            path[now] += dfs(v);
    }
    return path[now];
}
int main()
{
    while(~scanf("%d%d",&n,&m) && n)
    {
        init();
        int a, b, x;
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&x);
            E[a].push_back({b,x});
            E[b].push_back({a,x});
        }
        s = 2; Dijkstra();
        printf("%d\n",dfs(1));
    }
    return 0;
}
/*
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值