Ollama +DeepSeek R1安装及配置参考下文
AnythingLLM安装及配置
在知识库的构建中,我们采用AnythingLLM来作为知识库的UI,你也可以选择其他UI工具,比如 Dify,Fastchat, AnythingLLM 相对来说 0 代码基础的小伙伴就可以操作了,所以这里我们先以 AnythingLLM 为例。网址:https://anythingllm.com/ ,打开链接后界面如下:
点击【Download for desktop】选择合适的版本:
下载完直接双击安装即可,注意修改一下默认安装路径,出现如下页面说明安装成功。
安装完成后 打开AnythingLLM
点击【开始】
选择【Ollama】后自动加载我们已经下载好的大模型,选择合适的模型后点击下一步按钮,之后都是点击下一步按钮
创建一个工作区
点击【SummerGaoWorkspace】,进入默认对话界面,这个界面就是我在本地部署的的大模型:DeepSpeek-r1:8b
接下来就是拉取向量化模型,这里我拉取的是Nomic-Embed-Text 模型(他有很强的长上下文处理能力),打开命令提示符窗口,输入:
ollama pull nomic-embed-text
设置Embedding模型,确保你的LLM 首选项为Ollama:
返回工作区,现在一切基础工作准备就绪,接下来就是投喂资料了。我这里准备了一个SummerGao.txt文件:
SummerGao是一位在多个领域有丰富经验和贡献的技术专家,尤其在WEB开发、服务器端开发、运维/系统/网络管理等方面有着显著成就。
SummerGao在Gitee上有活跃的贡献记录,涉及多个编程语言和平台,包括Java EE、Java SE、C/C++、Python和ErLang。
他的博客数据统计显示,个人主页访问量达到456,183次,博客总阅读量达到1,286,778次。
此外,SummerGao还在CSDN上有活跃的分享,涉及多个技术主题,包括地图开发、DeepSeek R1安装、SpringBoot调用C++库文件等。
他的文章在CSDN上获得了较高的阅读量和收藏量,显示出他在技术社区中的影响力。
上传资料,点击上传按钮,弹出上传资料的界面:
上传完成后点击【Move to Workspace】:
点击【Save and Embed】:
效果测试
到此DeepSeek-RAG和本地知识库的构建内容完结。