Pytorch is_leaf

本文详细解析了PyTorch中叶张量的概念,重点介绍了哪些操作会导致张量从非叶变为叶,以及哪些情况下的张量始终为叶张量。通过实例说明了如何判断张量的is_leaf属性,这对于掌握梯度计算和优化至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载更正自Pytorch框架之is_leaf–查看是否为叶张量

  • 所有被需要计算梯度的变量直接赋值(不进行任何操作)创建的都是叶张量,注意不要包含任何操作
a = torch.rand(10, requires_grad=True)  # 直接赋给a,所以a.is_leaf为True
a = torch.rand(10, requires_grad=True, device="cuda") # 直接创建赋给a的,所以为True
a = torch.rand(10, requires_grad=True) + 5  # 运算后赋给a,所以a.is_leaf为False
# .cuda()也是一个op节点
a = torch.rand(10, requires_grad=True).cuda()  # 将数据移到gpu上再赋值给a,所以也是False
  • 所有不需要计算的梯度张量都是叶张量,无论是否包含操作
# all_leaf is True
a = torch.rand(10)    # 非梯度tensor -- 总是为True
a = torch.rand(10) + 5
a = torch.rand(10).cuda()
  • 由不需要梯度的张量创建的新的需要梯度的张量是叶张量
# all_leaf is True
# 由非梯度tensor变成梯度tensor后直接赋给,可以成为叶张量
a = torch.rand(10).requires_grad_()
#由非梯度tensor移动到gpu上再变成梯度tensor后直接赋给,可以成为叶张量
a = torch.rand(10).cuda().requires_grad_()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值