Open3D点云数据处理(十九):最小二乘直线拟合(矩阵方程法)

本文介绍了使用最小二乘法进行直线拟合的方法,特别是从矩阵方程的角度来理解最小二乘直线拟合。通过求解超定线性方程组,利用正规方程和奇异值分解,可以找到使误差平方和最小的直线参数。文章还提供了Python代码示例,展示了如何在二维空间中对点云数据进行最小二乘直线拟合。


专栏目录:Open3D点云数据处理(Python)


1 最小二乘直线拟合原理(矩阵方程角度)

最小二乘直线拟合是一种常用的数据拟合方法,它的目标是找到一条直线,使得该直线和样本数据之间的误差平方和最小。从矩阵方程的角度来看,最小二乘直线拟合可以看作是求解一个超定线性方程组的问题。

具体来说,我们假设有 n n n 个数据点 ( x i , y i ) (x_i, y_i)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙 悟 空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值