CMSIS-NN CIFAR10的md

这篇博客介绍了如何将Caffe模型转化为8位量化模型,并利用CMSIS-NN库在Arm Cortex-M处理器上进行部署。首先,通过nn_quantizer.py解析并量化模型,然后使用code_gen.py生成适用于Cortex-M的代码。注意,量化过程需要Caffe模型和训练数据,且模型的某些层(如conv、pool、relu、fc)受到支持。在生成代码后,可在目标CPU上运行。常见问题包括环境变量设置和数据路径确认。该过程适用于前向传播网络,不支持分支结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Caffe模型地址
CMSIS-NN CIFAR10示例

        这个例子展示了如何将经过训练的Caffe模型量化为8位,并使用[CMSIS-NN]这个将其部署到Arm Cortex-M 的CPU上。

入门:
        从训练过的Caffe模型生成代码依据的步骤如下:
1、Caffe模型协议文本的网络解析。
2、量化到8bit权重和激活。
3、使用优化神经网络生成代码。

nn_quantizer.py: :需要Caffe模型定义用来训练/测试由有效的数据路径(lmdb)和训练模型文件(.caffemodel)组成的模型。它解析网络图的连通性,逐层量化为 8 bit权重/激活,同时在测试集上的精度损失达到最小。其次它将网络图连接性、量化参数转储到pickle文件中。

code_gen.py: :从上一部获得得到的量化参数和网络图连通性,并生成由nn function生成的代码。支持的层:卷积、内积、池花(最大/平均)和relu层。它生成(a)weight.h(b)parameter.h:由量化范围和(c)main.cpp:网络代码组成。

Note::确保Caffe模型已经安装,以及它的python路径是否添加入$PYTHONPATH 环境变量中。

用法:
1、在.prototxt文件中更新数据(lmdb)路径,并运行nn_quantizer.py 解析以及量化网络。这一步如果在CPU上运行的话需要一段时间,因为在数据集上确认准确性的时候会逐层量化网络。

bash脚本语言

python nn_quantizer.py --model models/cifar10_m4_train_test.prototxt \ 
  --weights models/cifar10_m4_iter_70000.caffemodel.h5 \
  --save models/cifar10_m4.pkl

**Note:*要启用GPU进行量化扫描,请使用–gpu参数。

2、在Arm Cortex-M CPUs上运行代码

python code_gen.py --model models/cifar10_m4.pkl --out_dir code/m4

常见问题:
1、ImportError: No module named caffe
将Caffe python安装路径添加到$PYTHONPATH环境变量,例如

 export PYTHONPATH="/home/ubuntu_user/caffe/python:$PYTHONPATH"

2、 F0906 15:49:48.701362 11933 db_lmdb.hpp:15] Check failed: mdb_status == 0 (2 vs. 0) No such file or directory
确保模型prototxt定义中存在有效的数据集(lmdb),因为需要数据集来查找激活的量化范围。(可以看这个网站

已知限制:
1.解析器仅支持conv、pool、relu、fc层。
2.量化器仅支持前向反馈网络,而不支持分支出入(例如:SqueezeNet)

### CMSIS-NN简介 CMSIS-NN 是 ARM 提供的一组优化函数库,旨在帮助开发者在基于 Cortex-M 的微控制器上高效运行神经网络推理任务[^1]。这些函数针对定点运算进行了高度优化,使得可以在资源受限的环境中实现高效的机器学习应用。 对于希望深入了解或使用 CMSIS-NN 的开发者来说,可以从以下几个方面入手: #### 官方文档与教程 ARM 官网提供了详细的 CMSIS-NN 用户指南和技术参考手册,其中包含了安装说明、配置选项以及如何集成到现有项目中的指导[^2]。此外,《CMSIS-RTOS教程》虽然主要关注于实时操作系统的相关内容,但对于理解如何在一个完整的嵌入式系统框架下部署和管理神经网络模型也有一定的借鉴意义[^3]。 #### 示例代码 为了便于理解和实践,ARM 还提供了一系列示例工程来演示不同类型的神经网络结构及其训练后的权重加载方法。通过研究这些例子可以快速掌握基本概念并应用于实际产品开发之中。GitHub 上有许多开源项目也利用了 CMSIS-NN 库实现了各种功能的应用程序,比如图像识别、语音命令分类等[^4]。 ```c // 加载预训练好的模型参数至指定地址空间 void load_model_parameters(const char* filename, uint8_t *dst){ FILE *fp; fp = fopen(filename,"rb"); fread(dst,sizeof(uint8_t),MODEL_SIZE,fp); fclose(fp); } ``` #### 社区支持与其他资源链接 除了官方资料外,在线社区如 Stack Overflow 和 Reddit 论坛也是获取技术支持的好地方;同时还可以访问 Nordic Semiconductor GitHub 仓库查找更多有关宏定义和其他实用技巧的信息[^5]。另外,“超棒的嵌入式学习资源汇总”一文中列举了许多有价值的参考资料,涵盖了从基础入门到高级主题的内容,非常适合那些想要全面提高自己在这方面能力的人士阅读[^6]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love And Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值