Python快速刷题网站——牛客网 数据分析篇(五)

本文介绍了如何使用Python在牛客网的数据分析中,利用pandas的loc和query函数筛选出使用Python的用户。通过实例演示iloc和query的区别,强调了query的布尔表达式查询在数据筛选中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👦👦一个帅气的boy,你可以叫我Love And Program
🖱 ⌨个人主页:Love And Program的个人主页
💖💖如果对你有帮助的话希望三连💨💨支持一下博主

在这里插入图片描述

        python是目前非常火爆的语言,其在人工智能、数据分析领域都占有一席之地,无论是学习还是工作,都会给你带来相当大的帮助。我在这给大家 推荐一个快速提升自己的网站👉👉 牛客网,他们现在的IT题库内容很丰富,属于国内做的很好的了,可以在下图中看见里面试题应有尽有,最最最重要的里面的资源全部免费!!!(亲测全免费,写题解还可以得小礼物)

欢迎大家收藏关注并进行自助练习🥰🥰

系列专栏链接:

Python快速刷题网站——牛客网 数据分析篇专栏


🚬🚬前言

本章学习如何用pandas快速选取 所需目标

查看牛客网哪些用户使用Python

在这里插入图片描述

重要信息概要:如何输出Python这门语言
输出结果如下图所示:

在这里插入图片描述
       那么问题来了,如何专门提取Python?

       前面我们提到了iloc()loc()来找到对应行列,那我们是不是可以用这俩函数来找到language 中的 Python很明显,是可以的。
(先来建个表)

import numpy as np
import pandas as pd
data= pd.DataFrame({
    "Nowcoder_ID":['first','second','third','fourth'],
    "Level":[1,2,3,2],
    "Language":['Python','CPP','Python','C/C#'],
    "Achievement_value":[8711,13,999999,2],
    "Num_of_exercise":[500,2,32,222],
    "Graduate_year":[np.nan,np.nan ,np.nan,'7']
})
#	Nowcoder_ID	Level	Language	Achievement_value	Num_of_exercise	Graduate_year
#0	first	1	Python	8711	500	NaN
#1	second	2	CPP	13	2	NaN
#2	third	3	Python	999999	32	NaN
#3	fourth	2	C/C#	2	222	7

       这时我们选择data中的Language列筛选,选中Python字段,代码如下:

print(data.loc[data['Language']=='Python'])

在这里插入图片描述
       很明显Python被筛选出来,那我们用iloc函数试试

data.iloc[:,data['Language']=='Python']
# NotImplementedError: iLocation based boolean indexing on an integer type is not available

       我们需要想想,loc()函数是按标签取数据,而iloc()函数是按索引位置选择数据,只接受 整型参数!!,所以iloc()是不行的。难道就没有别的办法了么?

       有的!query()函数!!通过布尔表达式来查询dataframe中的列,专门用来筛选数据。
(注意:请自己手敲一遍,否则是无法学到新知识,更别提记住这些函数)

data.query("Language == 'Python' ")

在这里插入图片描述
最后附上此题代码及链接:DA6 查看牛客网哪些用户使用Python

import pandas as pd
Nowcoder = pd.read_csv('Nowcoder.csv',sep=',',dtype=object)
# print(Nowcoder.loc[Nowcoder['Language']=='Python'])
# print(Nowcoder[Nowcoder['Language']=='Python'])
print(Nowcoder.query('Language=="Python"'))
       只有不断锻炼自己写代码的能力,才能牢记这些函数,并去有意识的使用。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love And Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值