Operation
view/reshape
lost dim information
view操作必须有物理意义:对四张图片合在一起,忽略上下左右位移信息、二维信息、通道信息。
>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4,28*28)
tensor([[0.9750, 0.1818, 0.7628, ..., 0.6651, 0.3677, 0.8265],
[0.0921, 0.1000, 0.8699, ..., 0.2049, 0.3385, 0.5174],
[0.6671, 0.3868, 0.1271, ..., 0.8727, 0.7295, 0.7776],
[0.4635, 0.9024, 0.6649, ..., 0.4255, 0.0090, 0.0990]])
打印shape:
>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4,28*28).shape
torch.Size([4, 784])
多种理解方式:
①把前三个维度合并,即把所有照片、所有通道、所有行都放到第一维度,变成N。每一个
N都有一个一列一行的数据,一行的数据是28个像素点。只关注一行的数据。
>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4*28,28).shape
torch.Size([112, 28])
②把前边两个合并,即把所有照片、所有通道合并在一起,只关注数据
>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4*1,28,28).shape
torch.Size([4, 28, 28])
数据污染
b没有按照原来的维度信息存储,只有知道了a额外的维度信息,b才能恢复成a。
>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> b = a.view(4,784)
>>> b.view(4,28,28,1)
squeeze/unsequzee
增加维度
道理很简单,就是通过这个函数增加一个维度,但是不会改变数据,只是增加了一个组别。比如a是四维的那么可以增加额范围就是[-5,5)
也就是[-a.dim()-1, a.dim()+1)
正数是在当前位置之前插入,负数是在当前位置之后插入。
对应的插入顺序如下: