Pytorch——维度变换

view/reshape

lost dim information

view操作必须有物理意义:对四张图片合在一起,忽略上下左右位移信息、二维信息、通道信息。

>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4,28*28)
tensor([[0.9750, 0.1818, 0.7628,  ..., 0.6651, 0.3677, 0.8265],
        [0.0921, 0.1000, 0.8699,  ..., 0.2049, 0.3385, 0.5174],
        [0.6671, 0.3868, 0.1271,  ..., 0.8727, 0.7295, 0.7776],
        [0.4635, 0.9024, 0.6649,  ..., 0.4255, 0.0090, 0.0990]])

打印shape:

>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4,28*28).shape
torch.Size([4, 784])

多种理解方式:
①把前三个维度合并,即把所有照片、所有通道、所有行都放到第一维度,变成N。每一个
N都有一个一列一行的数据,一行的数据是28个像素点。只关注一行的数据。

>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4*28,28).shape
torch.Size([112, 28])

②把前边两个合并,即把所有照片、所有通道合并在一起,只关注数据

>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> a.view(4*1,28,28).shape
torch.Size([4, 28, 28])

数据污染

b没有按照原来的维度信息存储,只有知道了a额外的维度信息,b才能恢复成a。

>>> import torch
>>> a = torch.rand(4,1,28,28)
>>> b = a.view(4,784)
>>> b.view(4,28,28,1)

squeeze/unsequzee

增加维度

道理很简单,就是通过这个函数增加一个维度,但是不会改变数据,只是增加了一个组别。比如a是四维的那么可以增加额范围就是[-5,5)
也就是[-a.dim()-1, a.dim()+1)

正数是在当前位置之前插入,负数是在当前位置之后插入。

对应的插入顺序如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花里梦雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值