ElGamal加密算法|ElGamal签名算法|公钥密码|数字签名|密码学|信息安全

本文详细介绍了 ElGamal 加密算法的工作原理,包括密钥生成、加密及解密过程,并通过实例演示了整个流程。同时,还探讨了 ElGamal 签名算法,包括密钥生成、签名生成与验证过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ElGamal加密算法

简单介绍

  • EIGamal密码是除了RSA密码之外最有代表性的公开密钥密码

  • EIGamal是建立在离散对数的困难问题上的一种公钥体制密码

密钥产生

  • 选一个素数p,以及小于p的两个随机数gx
  • 计算 y=gxy = g^xy=gx%p
  • 公钥为(y, g, p),私钥为x

算法加密过程

M为明文

  • 选取一个与p-1互素的整数k
  • C1=gkC_1=g^kC1=gk%p
  • C2=ykMC_2=y^kMC2=ykM%p
  • (C1,C2)(C_1,C_2)(C1,C2)即为密文

算法解密过程

解密方法:C2C1x\frac{C_2}{C_1^x}C1xC2%p

证明:

在这里插入图片描述

EIGamal 密码体制安全性

由于私钥x是通信双方共享的,别人不知道

所以,当加密完了以后的密文(y, g, p)被别人盗取后,想获取明文M,只能通过 C2=ykMC_2=y^kMC2=ykM%p来获得,这里面只有kM是不知道的,所以只要获得了k就能获得M,而想获得k,只有通过 C1=gkC_1=g^kC1=gk%p来获取,这里面虽然只有k是未知数,但是求离散对数的过程是很困难的,尤其是对p很大的情,所以EIGamal密码体制很安全

举个例子

  • 取p=11, g=5, x=2
  • 则 y = g x%p = 3
  • 取 k 为 7, m为10
  • 则C1 = gk%p = 3
  • C2 = yk*m % p = 2
  • 则C1x%p= 9
  • 9在模11下的逆元为5
  • 所以 C2C1x=2∗5\frac{C_2}{C_1 ^x}=2 * 5C1xC2=25%10 =10,所以解密成功

ElGamal签名算法

密钥产生

  • 确定一个大素数p
  • 取p的一个本原根g
  • 在Zp域上选择一个随机数x
  • y = gx%p
  • (y, g, p)为公钥,x为私钥

签名算法

设待签名的消息为m

  • 取一个与p-1互质的k

  • C1=gk%p

  • C2=(H(m)-x*C1) * k-1%(p-1)

  • 输出签名(C1,C2)和消息m

验证算法

  • yC1∗C1C2=gH(m)y^{C_1}*C_1^{C_2}=g^{H(m)}yC1C1C2=gH(m)%p

正确性证明

在这里插入图片描述

举个例子

  • p = 11
  • g = 2,(注意必须取p的一个生成元)
  • x = 6
  • 计算y = gx%p = 9
  • 取 k = 7
  • 计算C1=gk%p = 7
  • 利用扩展欧几里得计算k在模p-1意义下的逆元k-1= 3
  • 假设需要验证的消息m经过哈希后的结果是H = 10
  • 则计算C2 = ((H - x * C1) * k-1 ) % (p-1) = 4
  • 验证:计算yC1∗C1C2y^{C_{1}} * C_{1}^{C_2}yC1C1C2%p = 1
  • 计算Hg%p=1
  • 所以验证成功
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值