简介
RAG 背后的主要前提是将背景(或知识)注入 LLM,以便从中得到更准确的响应。因此,RAG 系统的一个关键组件是它从中获取知识的数据源。因此,直觉上可以推断,RAG 系统可以利用的知识越多,它最终会变得越好(就回答深度和广度的查询而言)。这个概念的精神与基本上所有其他数据驱动学科中的精神并没有太大不同——获得更多(好的)数据,随后有效地使用,通常会带来更好的结果。
正是在这样的背景下,我们很高兴地宣布发布我们最新的llama-index库扩展,名为llama-index-networks。此库扩展使构建基于外部数据源并由外部参与者提供的 RAG 网络成为可能。这种新的网络范式为数据供应商提供了一种新的方式,可以将其数据提供给需要它的人,以构建更具知识性的系统!
在这篇博文中,我们将介绍新扩展库的主要类,并向您展示如何仅用几行代码就让您的 QueryEngine 准备好作为 RAG 网络的一部分做出贡献。我们还将分享这对数据供应商在 LLM 新时代如何向消费者提供数据意味着什么的想法。
术语说明:在本文中,我们使用llama-index-networks来指代实际的扩展,而指代扩展附带llama-index[networks]的安装。llama-indexllama-index-networks