python pandas concat数据串联

博客围绕Python中Pandas库的数据连接展开。Pandas的concat功能可用于连接数据,在信息技术领域的数据处理中十分实用,能帮助开发者高效整合数据,为后续的数据分析、挖掘等操作奠定基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import numpy as np

df1 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬

df2 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('KLMNOPQRST'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬

df3 = pd.DataFrame(data = np.random.randint(0,150,size = (10,2)),
 index = list('ABCDEFGHIJ'),
 columns=['PyTorch','Paddle'])

pd.concat([df1,df2],axis = 0) # df1和df2⾏串联,df2的⾏追加df2⾏后⾯
df1.append(df2) # 在df1后⾯追加df2
pd.concat([df1,df3],axis = 1) # df1和df2列串联,df2的列追加到df1列后⾯
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超级D洋葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值