AlphaGenome:打开基因调控“黑箱”的新一代 AI 模型

1. 背景:基因调控难题与非编码“暗物质”

在人类 31 亿个 DNA“字母”中,只有约 2 % 直接编码蛋白质,其余 98 % 属于“非编码区”,却承担着调控基因何时、何地、以何种强度表达的关键角色。破解这些非编码序列的功能,被许多科学家称作“基因组学最根本、也最棘手的问题之一” (deepmind.google, nature.com)。

2. AlphaGenome 概述

2025 年 6 月 25 日,Google DeepMind 发布了 AI 模型 AlphaGenome。论文与博客由 Žiga Avsec、Natasha Latysheva 等人撰写,模型现已通过 API 面向非商业研究者预览开放 (deepmind.google, github.com)。AlphaGenome 能在一次输入中读取 最长 100 万个碱基 的 DNA 序列,并对数千项分子属性给出精准预测。

3. 技术框架:卷积 + Transformer 的协同

AlphaGenome 首先用卷积层捕捉短序列模式,再用 Transformer 跨越整段序列传递信息,最后通过多层解码器输出在不同组织、细胞类型中的调控特征。得益于 TPU 并行优化,完整模型仅用约 4 小时即可训练完成,计算量约为前代 Enformer 的一半 (deepmind.google)。

4. 三大创新
创新点意义
长上下文 + 单碱基分辨率同时覆盖远距离增强子与精细的局部信号
多模态联合预测一次性输出启动子位置、RNA 产量、染色质可及性等多维信息
变异秒级评分通过“突变前后差分”快速评估单点突变的全方位影响
此外,AlphaGenome 还是首个可直接预测 RNA 剪接位点表达水平 的序列模型 (deepmind.google)。
5. 基准测试成绩

在 24 项单序列预测基准中,AlphaGenome 有 22 项优于最佳外部模型;在 26 项变异效应预测中,有 24 项达到或超越现有最优水平,且是唯一能同时解决全部任务的通用模型 (deepmind.google)。

6. 典型应用:白血病突变机制复刻

DeepMind 团队利用 AlphaGenome 复现了 T-ALL(T 细胞急性淋巴细胞白血病)研究中发现的非编码突变机制:模型预测这些突变会在 TAL1 基因附近引入 MYB 结合位点,从而异常激活该致癌基因,验证了其跨模态整合能力 (deepmind.google)。

7. 局限性与改进方向
  • 远距离调控:>100 kb 的超远程信号仍难以完全捕获。
  • 细胞特异性:对某些细胞或组织的预测精度有待提升。
  • 临床适用性:当前模型未针对整个人类基因组做个体级预测验证,不能直接用于诊断。
    DeepMind 表示正收集社区反馈以逐步改进 (deepmind.google)。
8. 与前代模型的关系
  • Enformer:聚焦基因表达预测,受限于序列长度或分辨率。
  • AlphaMissense:专注蛋白编码区变异致病性分类,仅覆盖 2 % 基因组。
    AlphaGenome 通过“一模型多任务”理念,将长序列、单碱基精度与多模态统一到同一框架,补足了非编码区功能解析的空白 (deepmind.google)。
9. 研究与产业潜力
领域可能突破
疾病机理精准定位罕见突变对基因调控的影响,辅助靶点发现
合成生物学设计仅在特定细胞激活的合成启动子或增强子
基础科学系统绘制功能元件图谱,加速“序列到功能”解码
专家评价其为“几乎在所有现有顶尖模型上取得总体性提升”,是一次“令人兴奋的大跨步” (nature.com, statnews.com)。
10. 开放生态与社区

预览版 API 已上线 GitHub,并配套论坛供全球研究者讨论、共享用例。DeepMind 鼓励科研人员在自有数据上微调模型,挖掘更多物种、更多调控模式 (deepmind.google, github.com)。


面向非生物背景读者的简易比喻

  • DNA = 一本厚书:26 个英文字母 → 4 个碱基字母(A/T/C/G)。
  • 基因 = 章节:决定蛋白质的“正文”。
  • 非编码区 = 目录 + 书签 + 批注:告诉“阅读器”何时翻到哪一页、如何高亮。
  • AlphaGenome = 高级解码器:给它 100 万字符的文本,它能同时指出章节标题、页码、批注位置,还能模拟“如果改动一个字母,整篇文章语义如何变化”。

结语

AlphaGenome 将“长距离上下文”“单碱基精度”“多模态预测”三大难题首次合并到同一模型,一举刷新多项基准,为探索非编码“暗物质”提供了强力工具。随着社区共同迭代,它有望加速罕见病机理阐释、靶向治疗开发与合成生物设计,标志着从‘序列’到‘功能’的 AI 时代表率正迅速到来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值