【蓝桥杯】BASIC-9 特殊回文数

本文介绍了一个编程问题的解决方案,该问题要求找出所有五位和六位的回文数,这些数的各位数字之和等于给定的整数n。通过使用C++的暴力破解方法,文章提供了详细的AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

123321是一个非常特殊的数,它从左边读和从右边读是一样的。输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n 。

输入描述:

输入一行,包含一个正整数n(1<=n<=54)。

输出描述:

按从小到大的顺序输出满足条件的整数,每个整数占一行。

输入样例:

52

输出样例

899998
989989
998899

解题思路:

蓝桥暴力杯 暴力破解就完事了,Up就完事了。

AC代码:

#include <bits/stdc++.h>
using namespace std;
#define Up(i,a,b) for(int i = a; i <= b; i++)

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    int n;
    cin >> n;
    Up(i,1,9)
    {
        Up(j,0,9)
        {
            Up(k,0,9)
            {
                if((i+j+k+j+i) == n)
                {
                    cout << i << j << k << j << i << endl;
                }
            }
        }
    }
    Up(i,1,9)
    {
        Up(j,0,9)
        {
            Up(k,0,9)
            {
                if((i+j+k+k+j+i) == n)
                {
                    cout << i << j << k << k << j << i << endl;
                }
            }
        }
    }
    return 0;
}

 

### 蓝桥杯 BASIC-07 题目及解析 #### 题目描述 蓝桥杯 BASIC-07 主要涉及阶乘计算的相关问题。具体来说,该题目要求编写程序来处理较大值的阶乘运算,并能够正确输出结果。 对于此类问题,由于标准据类型的范围有限,在面对较大的输入时可能会溢出。因此通常采用组存储多位的方式来进行大运算[^1]。 ```cpp #include<iostream> using namespace std; const int MAXN = 1e4 + 5; void multiply(int *num, int &len, int n){ int carry = 0; for (int i = 0; i < len; ++i) { num[i] *= n; num[i] += carry; carry = num[i]/10; num[i] %= 10; } while(carry != 0){ num[len++] = carry % 10; carry /= 10; } } void factorial(int N){ int result[MAXN]; memset(result, 0, sizeof(result)); result[0]=1; int length=1; for(int i=2;i<=N;++i){ multiply(result,length,i); } cout << "Factorial of " << N << ": "; for(int j=length-1;j>=0;--j){ cout<<result[j]; } } ``` 此代码实现了对给定自然 \( N \),求解其阶乘的结果并打印出来。通过定义 `multiply` 函完成每次相乘后的进位操作;再利用循环调用这个函逐步累加得到最终的大阶乘值。 #### 测试案例分析 当测试样例为较小值如\( N=5 \)时,可以直接验证算法准确性: \[ 5! = 5 × 4 × 3 × 2 × 1 = 120 \] 而对于更大的值比如 \( N=20 \),则可以观察到传统方法难以直接得出答案的情况下的表现,此时上述实现方式的优势就显现出来了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喜欢ctrl的cxk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值