markdown中的数学公式简要

本文介绍了Markdown编辑器的优势及其在不同平台的应用,并详细讲解了如何在Markdown中使用LaTeX语法来编写数学公式,包括角标、分数、求和、积分等常见表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在CSDN的博客开始支持Markdown编辑器后,自己完全转向了markdown编辑器。

Markdown的语法简洁明了、学习容易,而且功能比纯文本更强,因此用它写博客非常方便,还可以轻松的导出PDF或者HTML的文件。github上的wiki,各个project 中的readme,以及国内的“简书”都是Markdown 的用武之地。更重要的是,很多开发工具也都支持Markdown的插件,例如RStudio,Sublime Text等等。

Markdown 有很多现成的工具,例如Markdownpad,mou等,CSDN 的 Markdown 编辑器提供了示例模版,可以分分钟上手使用。网络上的资料更多:

  1. github的书写方式:
    https://help.github.com/categories/writing-on-github/

  2. markdown 语法规范:
    http://daringfireball.net/projects/markdown/syntax

  3. markdown 写作指南:
    https://www.binarization.com/archive/2016/markdown-guide/#help

老码农出于对开源工具的热爱,推荐在mac平台使用 MacDown 这一工具,可以到作者的blog上直接下载:

http://macdown.uranusjr.com/blog/

也可以到github上去源码编译:

https://github.com/MacDownApp/macdown

为什么是Mac平台?请参见《全栈必备 开发学习环境》一文。

在学习和实践的过程中,经常会遇到诸如算法之类的数学公式,在原始的Markdown中是不支持的,一般采用的方式:
1) 在其他的编辑器(例如word)中编辑好,然后制成图片,插入到Markdown的文档中
2)利用在线编辑器的web服务,将链接引入到markdown的文档中

这两种方式都不是很方便,实际上,很多的Markdown编辑器都是支持数学公式编辑的,通过的方式就是LaTeX 扩展,比如CSN的Markdown博客编辑器使用了MathJax 来支持LaTeX的:

CSDN 的Markdown 编辑器

LaTeX 是大神Leslie Lamport 的杰作,该神是2013年图灵奖的获得者,感兴趣可以去瞻仰一下神人的相关著述:
http://lamport.azurewebsites.net/pubs/pubs.html

LaTeX是一种基于ΤΕΧ的排版系统,对于生成复杂表格和数学公式表现得尤为突出。LaTeX也是当今世界上最流行和使用最为广泛的TeX格式。它构筑在 PlainTeX的基础之上,并加进了很多功能以利用TeX的强大功能,更多内容可以参考一下《LaTeX Cookbook》或者国内的《LaTeX 入门》等书籍。

LaTeX 博大精深,但对写博客而言,或许只需要知道凤毛麟角就勉强够用了。在MacDown中,只需勾选响应的选项,就可以使用LaTeX的语法编辑数学公式了,如下图:
这里写图片描述

对于常用的数学公式语法,以及一般遇到的场景,简要汇总如下:

1)角标 和 开方:

    $c = \sqrt{a^{2}+b_{xy}^{2} +e^{x}}$

c=a2+b2xy+ex

2)分数表达:

    $\frac{x^{2}y^{2}}{x+y}$

x2y2x+y

3)求和与联乘:

    $$\sum_{i=0}^{n}$  \prod_\epsilon$$

i=0nϵ

4)微分与积分

    $\int_{a}^{\pi} f(x) \,dx$  

πaf(x)dx

5)极限 与 偏导数

    $$ \lim_{x \to +\infty}\frac{1}{x}$$

    $$\frac{\partial^2 u}{\partial z^2}$$

limx+1x

2uz2

6.三角函数与矩阵

$$\cos2\theta = cos^2\theta - \sin^2 \theta \\ =  2\cos^2\theta -1$$

$$\begin{equation}
A=\left[
\begin{matrix}
1&2&3&\\
2&2&3&\\
3&2&3&
\end{matrix}
\right]
\end{equation}$$

cos2θ=cos2θsin2θ=2cos2θ1

A=135244344

7.数学符号与运算符
那些希腊字母,关系和运算符号还是查表吧。

这里写图片描述
这里写图片描述

更多用法参见《一份不太简短的LaTex 介绍》

最后,在这里写下传说中“上帝创造的公式”吧——欧拉公式。

eiπ+1=0

<think>好的,用户现在问的是关于LSTM的数学公式。我需要先回顾一下LSTM的基本结构和各个门的计算方式。LSTM是循环神经网络的一种变体,用于解决长依赖问题。它通过三个门(遗忘门、输入门、输出门)和一个记忆单元来控制信息的流动。 首先,用户可能已经了解RNN的基本概念,但遇到了梯度消失或爆炸的问题,所以想了解LSTM如何解决这些问题。用户可能在学习深度学习,特别是序列模型,或者在实际项目中需要应用LSTM,因此需要理解其数学原理以便调整模型或进行调试。 接下来,我需要整理LSTM的各个门的公式。遗忘门决定从细胞状态中丢弃哪些信息,输入门决定更新哪些新信息,输出门决定基于当前状态输出什么。每个门都有对应的权重矩阵和偏置项,以及激活函数(通常是sigmoid和tanh)。 需要注意的是,LSTM的公式在不同的资料中可能有细微的差别,比如是否使用偏置项,或者门的顺序,但核心思想是一致的。我需要确保公式的准确性,并按照常见的表示方法来呈现。例如,遗忘门、输入门、输出门的计算,以及细胞状态和隐藏状态的更新。 另外,用户可能对每个变量的含义不太清楚,所以需要在解释公式时,说明每个符号的意义,比如W和U是权重矩阵,b是偏置,h是隐藏状态,C是细胞状态等。同时,应该强调这些门如何协作来控制信息流,例如遗忘门和输入门共同更新细胞状态,输出门决定最终的隐藏状态。 可能还需要比较LSTM与传统RNN的区别,突出门控机制的优势。例如,LSTM通过细胞状态保存长期信息,避免梯度消失,使得模型能够学习长距离依赖关系。 此外,用户可能对如何实现LSTM的代码感兴趣,但当前问题主要是数学公式,所以可能不需要涉及代码,但如果有机会可以简要提到,比如在TensorFlow或PyTorch中如何调用LSTM层,但根据用户当前的问题,重点还是公式本身。 最后,需要检查公式的LaTeX格式是否正确,确保按照用户之前的指示,独立公式使用$$...$$,行内公式用$...$,并且结构清晰,分步骤解释每个部分。同时使用中文回答,保持口语化,但避免使用Markdown格式,保持自然流畅。</think>以下是LSTM(长短期记忆网络)核心数学公式的逐步解析,结合其门控机制和记忆单元的工作原理: --- ### **1. LSTM核心结构** LSTM通过三个门(遗忘门、输入门、输出门)和一个记忆单元(Cell State)控制信息流,结构如图: ``` 输入 → 遗忘门 → 记忆单元更新 → 输入门 → 输出门 → 输出 ``` --- ### **2. 公式分步解析** #### **(1) 遗忘门(Forget Gate)** 决定从记忆单元中丢弃哪些信息,**计算方式**: $$ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) $$ - $f_t$:遗忘门输出(0~1之间的向量,0表示完全丢弃,1表示完全保留) - $\sigma$:sigmoid函数,压缩到(0,1)范围 - $W_f$:遗忘门权重矩阵 - $h_{t-1}$:前一时刻的隐藏状态 - $x_t$:当前输入 - $b_f$:遗忘门偏置项 --- #### **(2) 输入门(Input Gate)** 决定将哪些新信息存入记忆单元,包含两步: - **门控筛选**: $$ i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) $$ - **候选记忆值生成**: $$ \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) $$ - $i_t$:输入门输出(控制候选值$\tilde{C}_t$的保留比例) - $\tilde{C}_t$:候选记忆值(包含当前输入的新信息) --- #### **(3) 记忆单元更新(Cell State Update)** 结合遗忘门和输入门的结果,更新记忆单元: $$ C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t $$ - $C_t$:更新后的记忆单元 - $\odot$:逐元素相乘(Hadamard积) - **逻辑解释**: - $f_t \odot C_{t-1}$:选择性遗忘旧信息 - $i_t \odot \tilde{C}_t$:选择性添加新信息 --- #### **(4) 输出门(Output Gate)** 决定当前隐藏状态的输出内容: - **门控筛选**: $$ o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) $$ - **最终输出**: $$ h_t = o_t \odot \tanh(C_t) $$ - $h_t$:当前隐藏状态(传递到下一时间步) - $\tanh(C_t)$:将记忆单元压缩到(-1,1)范围 --- ### **3. 公式汇总(完整版)** $$ \begin{aligned} f_t &= \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \\ i_t &= \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \\ C_t &= f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ o_t &= \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \\ h_t &= o_t \odot \tanh(C_t) \end{aligned} $$ --- ### **4. 关键设计解析** 1. **门控机制的作用** - **sigmoid函数**:生成0~1的权重值(类似“开关”),控制信息通过比例 - **tanh函数**:将值压缩到-1~1范围,防止梯度爆炸 2. **记忆单元($C_t$)的特殊性** - 跨时间步的线性传递(仅通过逐元素乘加操作),避免梯度消失 - 公式中$C_t$直接累加历史信息,适合长期依赖学习 3. **参数规模** - 每个门(遗忘门、输入门、输出门)和候选记忆值都有独立的权重矩阵$W$和偏置$b$ - 总参数量 = 4 × (输入维度 + 隐藏层维度) × 隐藏层维度 --- ### **5. 变体与改进** 1. **Peephole LSTM** 在门控计算中加入对$C_{t-1}$的依赖: $$ f_t = \sigma(W_f \cdot [h_{t-1}, x_t, C_{t-1}] + b_f) $$ 2. **GRU(门控循环单元)** 将遗忘门和输入门合并为“更新门”,简化计算: $$ z_t = \sigma(W_z \cdot [h_{t-1}, x_t]) $$ $$ h_t = (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t $$ --- ### **6. 代码实现片段(PyTorch示例)** ```python import torch import torch.nn as nn # 定义LSTM单元 class LSTMCell(nn.Module): def __init__(self, input_size, hidden_size): super().__init__() self.hidden_size = hidden_size # 合并计算四个门的权重(PyTorch实际实现方式) self.ih = nn.Linear(input_size, 4*hidden_size) self.hh = nn.Linear(hidden_size, 4*hidden_size) def forward(self, x, state): h_prev, c_prev = state gates = self.ih(x) + self.hh(h_prev) f, i, g, o = gates.chunk(4, dim=1) # 分割为四个部分 f = torch.sigmoid(f) i = torch.sigmoid(i) g = torch.tanh(g) o = torch.sigmoid(o) c_next = f * c_prev + i * g h_next = o * torch.tanh(c_next) return h_next, c_next ``` --- 通过以上公式,LSTM实现了对长期依赖的有效学习,广泛应用于时间序列预测、自然语言处理等领域。理解这些数学细节有助于调整超参数(如隐藏层维度)或自定义变体结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值