📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)
📝 职场经验干货:
传统的软件测试行业非常的卷,但是AI软件测试是很值得选择的!
可能很多人不知道AI软件测试,这里先给大家普及一下:
AI软件测试是利用AI模型进行验证数据质量、训练,从而进行性能评估,测试正常产品是否符合我们需要的场景和稳定性。包括利用AI技术来自动化和优化软件测试的整个过程。
软件测试的现状
传统的手动编写和执行测试用例,显得很效率低下、成本高昂、易出错等弊端。比如一个网站,需要手动编写测试用例,模式数据,以及设置相对应的场景。
虽然后来也出现了自动化测试,但是自动化难以适应所有的场景需求,并且自动化测试的设计仍然比较复杂。有时候还是需要编写大量的脚本,消费掉很大的人力和财力以及时间成本,虽然比传统的手动要快,但是仍然是一个成本问题。
为什么要选择AI软件测试?
AI软件测试可以通过自然语言处理技术,能够自我理解测试场景并自动生成测试代码。这样一来,简化了测试自动化的流程,让即使没有编码经验的团队成员也能参与到测试中来,可以在再短时间内完成多语言、多平台的测试。
举个例子:
我之前的公司,当产品功能开发完成之后,产品经理,开发以及QA三方沟通平均耗时1个小时左右、测试他们手动写测试用例耗时能打3天甚至更长、并且覆盖不充分、需文档质量参差不齐。每次遇到问题又要重新开会,又要花费很多的时间。
这些都是让我头疼的几点。这不我这边基于AI自动生成测试用例,包含利用LLM对需求文档解析和预处理、prompt构建、测试用例自动生成、自动生成脑图,最后可以真正的去跑通起来。
这样本来两周的工作量,有了这解决防范,我们团队10分钟就搞定了,这是所有领导想要看到的,我也因此加薪升职了。
所以在AI风口下,我觉得测试工程师最有前景、最赚钱的就是——AI产品测试工程师!
目前互联网巨头公司微软,Google,以及国内的大厂阿里巴巴等大厂,都在挖掘AI方向的测试,4年左右的经验,就能给到45k*15的高薪!
我们打开网站不难可以看出传统测试岗逐渐落寞,AI测试岗已是大势所趋。
所以现在入局AI是“求生”,一成不变则是被“淘汰”,命运掌握在自己手中,与其焦虑被淘汰,不如先人一步享受AI技术带来的红利!
如何学习AI软件测试?
了解大模型底层原理
原理是基于神经网络和大量数据的训练。这些模型通过模拟人脑的神经元结构,对输入数据进行多层抽象和处理,从而实现对复杂任务的学习和预测。
例如,在自然语言处理中,它可以将一段文本转换为一系列语义向量。解码器则依据编码器的输出以及特定的任务要求进行信息解码与生成。例如在机器翻译任务中,解码器根据源语言文本编码后的向量生成目标语言文本。
学习AI大模型算法
学习AI自动化解决方案,是AI测试软件工程师必须的知识,AI大模型算发也是必不可少的,我总结了一下:
·线性回归
· 逻辑回归
· 线性判别分析
· 决策树
· Naive Bayes
· K-Nearest Neighbors
· 学习矢量量化
· 支持向量机
· Bagging和随机森林
· 深度神经网络
2025年,未来已来,AI为测试赋能,冲击AI软件测试工程师,你永远很值得!
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】