AI加速软件测试,测试人员该如何应对?

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


GEN AI在软件测试领域能做什么?

有人在提“AI重塑软件测试”,目前看来,AI还不至于重塑软件测试,但是AI确实也有不少可能应用,最常见的是用来生成测试用例、编写自动化测试代码等等,从全生命周期的质量内建来看,可能的应用还有如下图这些:

我曾以小白身份咨询ChatGPT关于如何做软件测试的话题《AI教小白做软件测试》,它的回答非常全面,真的非常能干了,似乎不需要测试人员了?真的是这样吗?

GEN AI应用的风险与挑战

当然,测试小伙伴们,也不用太焦虑。AI还没那么成熟,还是存在很多风险与挑战的,主要有以下四类:数据隐私与安全、质量陷阱、黑盒问题、技术依赖。

1. 数据隐私与安全

数据隐私与安全的风险,主要与敏感数据的使用有关,涉及两方面:数据泄露风险、训练偏见导致不公平决策。

1)数据泄露风险

在给AI输入数据里如果包含个人身份信息或者商业机密数据,并且没有做好数据脱敏,就会有很大的泄露风险,导致不可控后果。如果采用数据匿名化处理,对敏感数据进行脱敏,又可能会影响到AI的输出,这是个两难的问题,需要很好的平衡才行。

2)训练偏见导致不公平决策

如果大模型训练的历史数据包含带有偏见的数据,如种族歧视、性别歧视等,再用这样的大模型去辅助软件测试,有可能导致智能决策的不公平,从而引发相应的质量问题。

2. 质量陷阱

质量陷阱主要由AI幻觉引起。

1)测试本身的质量与测试误报

大模型生成的单元测试,看似覆盖率很高,但实际情况可能有边界case没有覆盖到的情况,但这种测试的质量问题很难被发现。有的AI自动化测试工具存在测试误报的“假阳性”/“假阴性”问题,假阳性可能导致耗费大量时间诊断一个根本不存在的问题,而假阴性则可能导致严重的质量问题流到生产环境,其后果无法估量。

2)过于依赖AI判断,容易导致决策失误

当团队过于信任AI生成的测试数据或分析结果,而没有足够的人类评审时,AI幻觉产生的虚假信息可能直接影响到测试的质量。智能决策如果基于AI幻觉数据,显然决策不可能准确,比如:误判“不需要测试”的地方,可能已经有潜在问题出现。

3. 黑盒问题

黑盒问题主要是因为大模型的决策过程不透明所导致的问题。

1)难以追溯错误来源

大模型内部逻辑复杂,用户无法理解它的输出结论是如何得出的。如果结果不准确或者有偏差,溯源非常困难,难以定位问题到底出在哪里。

2)导致信任危机

由于决策过程无法理解,用户很难信任AI的结果;另外,无法清晰解释的决策存在法律和合规风险,尤其是金融软件相关的场景。

4. 技术依赖导致团队技能弱化

技术依赖导致团队技能弱化,主要体现在如下两个方面:

1)基础技能退化

AI自动化工具高度依赖,测试人员缺乏深入思考,人为判断能力会退化;慢慢地,逻辑思维能力也会下降,解决实际问题的能力缺失。

2)创新停滞

基于历史数据训练的大模型,倾向于优化现有模式,对新技术、新框架的适应性下降。另外,依赖工具制定的策略,根据实际情况灵活调整策略的能力不够,因而导致创新停滞。

GEN AI应用的现状和未来

GEN AI给软件测试带来了不同的机会,同时也存在风险和挑战。

1. 趋势报告解读AI在软件测试领域应用的现状

接下来通过三份趋势报告来了解一下大家目前的AI应用情况,以及对未来的预期是怎么样的。

报告原文:

- Katalon: https://katalon.com/reports/state-quality-2024 

- Lambdatest: https://www.lambdatest.com/future-of-quality-assurance-survey 

- Capgemini: https://www.capgemini.com/insights/research-library/world-quality-report-2024-25/

基于三份报告,主要概述以下三个方面:

1)AI应用比较多的质量活动

主要有测试用例生成、自动化测试脚本生成、测试数据生成和自动缺陷分析和预测。

2)阻碍采纳AI的因素

主要包括可靠性、安全性、AI工具的能力、人员的AI技能等。

3)未来测试会由AI取代吗?

60.60%的组织认为,人工智能(AI)将提升团队的生产力,而人类将在测试过程中继续发挥主要作用。这表明,AI被广泛视为测试过程中的增强工具,而非完全替代品。

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值