测试工程师学LangChain之promptTemplate 实战笔记


一、引言:大模型时代的测试自动化革命

2025 年,随着大模型(如 DeepSeek)在自动化测试领域的广泛应用,Prompt 编写已成为测试工程师的核心技能之一。
为什么?

  • 大模型输出的质量 90% 取决于输入的 Prompt
  • LangChain 的 PromptTemplate 提供了参数化 Prompt 的标准化方案
  • OpenAI SDK 为模型调用提供了更简洁、高效的接口

本文将通过真实代码示例(基于 OpenAI SDK 调用 DeepSeek),展示如何用 LangChain 的 PromptTemplate 实现高效的测试自动化,并对比传统手动编写 Prompt 的局限性。


二、核心工具:LangChain PromptTemplate vs 传统 Prompt

1. 什么是 PromptTemplate?

LangChain 的 PromptTemplate 是一种参数化 Prompt 的工具,允许测试工程师通过模板和变量动态生成高质量的提示词。

核心优势:

  • 标准化:统一管理 Prompt 模板
  • 可复用:一套模板适配多种场景
  • 易维护:变量修改即可适配新需求

2. 与手动编写 Prompt 的对比

方式 优势 劣势
手动编写 Prompt 灵活、快速上手 易出错、难维护、复用性差
LangChain PromptTemplate 标准化、可复用、易维护 需要额外学习

三、使用 OpenAI SDK 调用 DeepSeek 的正确姿势

1. 传统错误方式:手动调用 API

# 安装依赖
!pip install openai
from openai import OpenAI

# 初始化 DeepSeek 客户端
client = OpenAI(
    api_key="your_deepseek_api_key",
    base_url="https://api.deepseek.com"
)

# 调用模型生成响应
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {
   "role": "system", 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值