LangChain 入门指南:基于 DeepSeek 模型构建对话流程(保姆级)

本教程将以实际代码案例为基础,带您掌握 LangChain 的核心概念与开发流程。我们将使用 LangChain 0.2.17 和 langchain-openai 0.1.25 版本,结合 DeepSeek 的 deepseek-chat 模型,构建一个完整的意图识别-响应生成系统。结合Jupyter进行实践效果更佳。需申请deepseek的API-KEY,充值10元可以玩好久。
在这里插入图片描述

在这里插入图片描述

一、环境准备

# 安装必要依赖
!pip install langchain==0.2.17 langchain-community==0.2.19 langchain-openai==0.1.25

在这里插入图片描述
在这里插入图片描述

二、代码结构解析

1. 核心组件初始化

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="deepseek-chat",
    api_key="sk-b247cb47eff84e9694f383c09682xxxx",  # todo 替换deepseek API Key  https://platform.deepseek.com/api_keys
    temperature=0.7,
    max_tokens=512,
    timeout=30,
    max_retries=3,
    base_url="https://api.deepseek.com"
)

在这里插入图片描述
按shift+enter进行执行操作。

关键参数说明:

  • model: 指定使用 DeepSeek 的 deepseek-chat 模型
  • temperature: 控制输出随机性(0-1 范围)
  • base_url: DeepSeek API 的基础地址
  • max_retries: 网络重试次数

2. 流程链式构建

(1)意图识别链
intent_prompt = PromptTemplate(
    input_variables=["input_text"],
    template="请根据以下输入识别用户意图:{input_text}"
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值