打造高效多模态RAG系统:原理与评测方法详解

引言

随着信息检索与生成式AI的深度融合,检索增强生成(RAG, Retrieval-Augmented Generation) 已成为AI领域的重要技术方向。传统RAG系统主要依赖文本数据,但真实世界中的信息往往包含图像、表格等多模态内容。多模态RAG(Multimodal RAG)通过结合文本与视觉信息,显著提升了系统的理解能力与应用场景。然而,如何科学、全面地评测多模态RAG系统的性能,是测试工程师必须掌握的核心技能。

本文将结合 EvalScope 多模态RAG评测实践,系统介绍多模态RAG的原理、评测流程、关键指标及代码实现,帮助测试工程师快速上手并深入理解评测要点。


一、RAG与多模态RAG简介

1.1 传统RAG的局限性

传统RAG系统通过以下流程工作:

  1. 检索:从大规模文本数据库中查找与用户问题相关的片段。
  2. 生成:将检索到的文本输入大语言模型(LLM),生成最终答案。

然而,传统RAG的局限性在于:

  • 忽略非文本信息:无法处理图像、表格等非结构化数据。
  • 上下文理解受限:仅依赖文本可能导致信息缺失或歧义。

1.2 多模态RAG的优势

多模态RAG通过以下改进,解决了传统RAG的不足:

  1. 多模态检索:支持文本、图片、表格的联合检索。
  2. 多模态生成:利用多模态LLM(如Qwen-VL、GPT-4o)结合文本与视觉信息生成答案。
  3. 更贴近真实场景:适用于医疗影像诊断、工业质检、农业识别等需结合图像的场景。

二、多模态RAG的评测流程

多模态RAG的评测分为四个核心步骤,每个步骤均需严格验证:

2.1 文档解析

目标:将PDF、扫描文档等非结构化数据转换为可检索的多模态元素(文本、图片、表格)。

关键技术

  • 工具unstructuredMinerU 等库用于解析PDF。
  • 实现细节
    • 图像提取:从PDF中提取高清图片,存储为独立文件。
    • 文本与表格提取:分割文本段落和表格,保留结构信息。
    • 示例代码
      from unstructured.partition.pdf import partition_pdf
      def extract_pdf_elements(file_path, output_image_path):
          elements = partition_pdf(
              filename=file_path,
              strategy="hi_res",  # 高分辨率解析
              extract_images_in_pdf=True,
              extract_image_block_output_dir=output_image_path  # 图片保存路径
          )
          return elements
      

2.2 多模态向量存储

目标:将文本与图像统一编码为向量,存入向量数据库,便于后续检索。

关键技术

  • 嵌入模型:使用多模态模型(如CLIP、Chinese-CLIP)计算文本与图像的联合向量。
  • 向量数据库:Chroma、FAISS 等支持高效相似性搜索。
  • 实现细节
    • 统一编码:通过CLIP模型将文本和图像映射到同一向量空间。
    • 向量存储:将向量与元数据(如图片URI)存入数据库。
    • 示例代码
      from langchain_chroma import Chroma
      from evalscope.backend.rag_eval import VisionModel
      
      # 加载CLIP模型
      vectorstore = Chroma(
          collection_name="mm_rag_clip",
          embedding_function=VisionModel.load(model_name="AI-ModelScope/chinese-clip-vit-large-patch14-336px")
      )
      
      # 添加图片到向量库
      image_uris = [os.path.join(image_path, img) for img in os.listdir(image_path) if img.endswith(".jpg")]
      vectorstore.add_images(uris=image_uris)
      

2.3 检索增强生成

目标:根据用户问题检索相关多模态内容,并生成答案。

关键技术

  • 相似性搜索:通过向量数据库找到最相关的文本和图像。
  • 多模态生成:将检索到的内容输入多模态LLM生成答案。
  • 实现细节
    • 检索策略:使用similarity_search查找Top-K相关结果。
    • 生成策略:将检索到的文本和图像作为上下文输入LLM。
    • 示例代码
      class RAGPipeline:
          def __init__(self, retriever, model):
              self.retriever = retriever
              self.model = model
      
          def invoke(self, question):
              # 检索相关上下文
              context = self.retriever.invoke(question)
              # 生成答案
              response = self.model.generate(context=context, question=question)
              return response
      <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值