RAG、Fine-Tuning 与 Prompt Engineering 通俗对比与测试工程师实战要点

1. 三种方法的本质是什么?

1.1 RAG(检索增强生成)——“问问资料库再作答”
  • 通俗理解:就像遇到不会的问题先查资料,然后再根据查到的内容回答——RAG模型也是先去知识库里检索相关信息,再结合模型的能力生成答案。
  • 优点:不会因为模型“记忆”过时而答错,因为它能随时查最新数据。
  • 常见用法:智能客服、企业知识问答、产品信息检索等。
  • 技术要点:依赖外部的检索系统(如向量数据库、全文检索引擎),检索结果越准,答案质量越高。
1.2 Fine-Tuning(模型微调)——“量身定制训练”
  • 通俗理解:在通用大模型的基础上,用特定领域的数据给模型“补课”,让它变得更专业。
  • 优点:针对性强,能在专业领域(如医疗、金融)表现出色。
  • 常见用法:医学文本分析、法律文本分类、语义识别等。
  • 技术要点:需要有高质量、足量的标注数据,以及一定的训练资源。
1.3 Prompt Engineering(提示工程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值