1. 三种方法的本质是什么?
1.1 RAG(检索增强生成)——“问问资料库再作答”
- 通俗理解:就像遇到不会的问题先查资料,然后再根据查到的内容回答——RAG模型也是先去知识库里检索相关信息,再结合模型的能力生成答案。
- 优点:不会因为模型“记忆”过时而答错,因为它能随时查最新数据。
- 常见用法:智能客服、企业知识问答、产品信息检索等。
- 技术要点:依赖外部的检索系统(如向量数据库、全文检索引擎),检索结果越准,答案质量越高。
1.2 Fine-Tuning(模型微调)——“量身定制训练”
- 通俗理解:在通用大模型的基础上,用特定领域的数据给模型“补课”,让它变得更专业。
- 优点:针对性强,能在专业领域(如医疗、金融)表现出色。
- 常见用法:医学文本分析、法律文本分类、语义识别等。
- 技术要点:需要有高质量、足量的标注数据,以及一定的训练资源。