自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(279)
  • 收藏
  • 关注

原创 深入理解 LangChain:AI 应用开发的全新范式

AI 应用开发从未像今天这样门槛低、效率高。LangChain 作为连接 LLM 能力与真实业务的“中间件”,正帮助越来越多的开发者把脑海中的 AI 想法变为现实。如果你也想搭建属于自己的智能应用,不妨就从 LangChain 开始吧!

2025-07-13 22:40:35 626

原创 如何用 LangChain 自定义 Chat Model —— 测试工程师实践指南

LangChain 把“聊天模型”抽象为一种消息输入、消息输出的接口。消息类型说明系统消息,通常作为对话的第一条,用来设定AI行为用户输入消息AIMessageAI 的回复,既可以是文本,也可以是函数调用的请求工具/函数调用结果与 FunctionMessage 类似,随 OpenAI 新标准发展…Chunk对应消息的“流式”输出切片,用于分步输出流式消息Chunk:用于支持“边生成边输出”,比如大模型流式回复时每次只返回一部分token。Mock/测试场景。

2025-07-11 00:07:18 880

原创 LLM接口调用缓存实战指南——测试工程师的效率加速器

选择方案:根据开发场景选择内存或数据库缓存代码集成:通过LangChain的快速启用验证效果:通过测试用例验证缓存命中率和性能提升。

2025-07-10 23:31:11 455

原创 为什么测试工程师要关注多模态RAG? ——对比普通RAG,深度解析RAG-Anything的先进性与落地价值

普通RAG只能看段落,多模态RAG能看全景。自动化测试只有兼顾文本、图片、表格、公式全局,才能真正‘知其然、知其所以然’。打通文档所有模态,极大降低了复杂文档测试的门槛,帮助测试工程师把自动化测试做得更深、更广、更精准,为企业质量保障和创新测试场景提供坚实基础。

2025-07-07 21:40:43 884

原创 测试工程师视角:如何理解与高效应用 `trim_messages` 消息裁剪

灵活支持 token/消息/部分截断/自定义计数保证历史格式安全,易于集成和自动化测试搭配 LangSmith 可视化和多用户隔离,极大提升测试效率把消息裁剪测试作为多轮对话测试的必测环节。优先覆盖不同窗口、不同历史长度、特殊边界(如只剩 SystemMessage)等场景,提升产品鲁棒性和用户体验。

2025-07-03 22:31:12 815

原创 通俗解析:如何在 LangChain/LangGraph 中管理消息历史

除了消息历史,你还可以在状态中加入其它参数,比如当前对话语言。每次对话可以指定 language(如 “Chinese”, “English”, “Spanish”)消息历史会自动添加,语言会自动覆盖LangGraph自动管理消息历史,极大简化了多轮对话和多用户的开发、测试和维护。thread_id 隔离机制天然适合并发场景。灵活的状态管理为复杂对话和个性化配置打下了基础。测试工程师可以用 get_state、update_state 等接口,轻松覆盖各种历史与边界场景。一句话总结。

2025-07-03 20:46:42 676

原创 通俗易懂的LangGraph图定义解析

的组合,构建出复杂的工作流逻辑。下面我们通过一个简单的例子,逐步讲解 LangGraph 中的图(Graph)是如何定义的。通过节点和边的灵活组合,让开发者能够轻松构建复杂的工作流。无论是简单的线性流程,还是带条件分支、循环的复杂逻辑,,你可以将这三个步骤定义为节点,并通过边连接它们,同时用状态对象传递上下文(比如用户的消息、查询结果等)。是 LangGraph 的核心类,用于定义和管理基于状态的图结构。定义一个图的核心步骤包括:创建状态、添加节点、设置边,并最终编译图。节点是执行具体任务的函数。

2025-07-02 23:58:44 925

原创 LangChain & LangGraph 核心方法实用讲解:测试工程师必备技能

掌握 LangChain & LangGraph 这些核心方法,测试工程师不仅能构建强大的智能问答和知识检索助手,还能把 AI 能力嵌入到测试流程的每个环节,让你的团队在自动化、智能化道路上快人一步!建议:从小规模开始:用 10 个测试用例或 5 个缺陷描述搭建原型,验证效果。持续迭代优化:根据实际需求调整文档切分策略、向量化模型和对话流程。结合团队规范:将与团队的测试标准、安全要求深度绑定。最终目标。

2025-06-27 08:43:33 753

原创 构建RAG应用实战进阶(二):让对话型检索更聪明!——代码详解与原理通俗解读

多轮记忆靠消息序列封装,每条消息都是历史的“存档”检索工具可灵活扩展,满足复杂知识库场景LangGraph让流程管理更清晰,易于维护和扩展代码每步都可流式输出,便于调试和追踪每一个对话节点。

2025-06-26 23:53:12 664

原创 玩转Prompt模板与上下文管理:测试工程师进阶LangChain多轮对话机器人

LangChain 让每个测试工程师都能拥有自己的“超级测试助手”——既懂你的业务,又会高效对话,还能输出专业级别的答案。只要用好 Prompt 模板和上下文管理,你的测试机器人将成为团队的“智慧左膀右臂”!下期预告:如何结合 LangChain、RAG 技术让机器人基于测试用例库/缺陷库实现“知识检索+对话”一体化?持续关注,测试智能化之路越走越宽!

2025-06-25 01:50:04 900

原创 测试工程师实战:用 LangChain+deepseek构建多轮对话测试辅助聊天机器人

LangChain 的价值:自动记录上下文,支持多轮追问,能持续输出结构化、专业的测试知识,极大提升测试工程师的工作效率和答题表现。应用场景:面试模拟、用例设计、测试知识普及、自动化测试建议生成等。工程师建议善用多轮对话能力,深入挖掘测试场景;灵活切换 thread_id,区分不同会话与需求;结合自己的经验,优化 Prompt,让机器人更懂“测试”。结语。

2025-06-22 23:33:28 924

原创 测试工程师如何利用通用千问大模型精准获取需求文档图片内容

通用千问OCR大模型为测试工程师带来了强大的图片内容结构化提取能力,助力自动化需求追踪、文档归档、票据处理等关键流程。通过合理的Prompt设计与流程集成,可以极大提升测试效率和数据质量,是现代测试工程师不可或缺的智能利器。建议在实际项目中持续优化Prompt和图片采集流程,结合业务实际反复验证,不断提升模型应用价值。

2025-06-20 23:59:50 962

原创 构建智能问答系统:从零开始实现 RAG 应用

通过 LangChain 的 RAG 框架,你可以高效构建一个结合外部知识的智能问答系统。从数据加载、向量存储到检索生成,LangChain 提供了完整的工具链,大幅降低了开发复杂度。无论你是企业开发者、研究人员,还是 AI 爱好者,RAG 都能帮助你释放 LLM 的潜力。:尝试将 RAG 应用于你的实际项目!例如,为你的团队搭建一个基于内部文档的智能助手,或者为网站添加实时客服问答功能。,检索增强生成)是一种结合信息检索与文本生成的技术,旨在提升大型语言模型(LLM)在特定领域或私有数据上的表现。

2025-06-18 23:58:46 675

原创 AI测试开发工程师如何用大模型调用工具:从入门到实践

工具调用是指:Chat大模型接收到指令后,自动生成调用工具所需的参数,由外部工具执行具体操作(如计算、数据验证、接口调用等),而不是模型自己直接操作或返回结果。要点概括模型负责“决定怎么做”,工具负责“具体去做”;可以应用在测试数据生成、结果校验、自动化测试等场景;模型输出的是参数,由测试工程师或测试系统来执行工具,并处理结果。不同的业务和测试需求下,工具的定义可以有不同的方式。工具调用技术为测试工程师带来了全新的智能化生产力工具。

2025-06-17 23:35:10 517

原创 通俗易懂讲解 LangChain 的 Messages 模块

极大简化开发:统一消息格式,让你无需为不同模型单独适配,开发效率翻倍。高效支撑复杂场景:天然支持多轮对话、工具调用、流式输出,满足企业级 AI 应用需求。维护轻松:结构化消息类型,调试、日志追踪一目了然。无限扩展:支持自定义消息,快速适配多变业务场景。LangChain 的 Messages 模块,像搭积木一样,让开发 AI 应用变得高效、灵活又可控!无论你在做客服机器人、智能助手还是行业分析,Messages 模块都能助你一臂之力。

2025-06-16 23:45:25 931

原创 LangChain 消息机制全解析:测试工程师的实用指南

LangChain 的消息机制为测试工程师提供了强大的工具,帮助我们更高效地验证 AI 应用的行为。在传统的软件测试中,我们通常关注输入与输出的匹配性(例如:输入 A,期望输出 B)。然而,在基于 AI 的系统中,对话往往涉及多轮交互,输入输出的结构更加复杂。本文将结合实际测试场景,深入浅出地讲解 LangChain 的消息机制,并提供可直接复用的测试案例。如果 AI 与前端集成,可以使用 Selenium 或 Playwright 模拟用户输入,验证前端与后端消息的交互。功能,批量测试不同输入场景。

2025-06-15 22:51:53 548

原创 LCEL:LangChain 表达式语言详解与测试工程师的实践指南

LCEL 通过声明式语法和优化的执行机制,为 AI 应用的开发与测试提供了强大的支持。简化复杂逻辑的测试流程,通过链式组合快速构建测试用例;提升测试效率,利用并行化和异步处理加速执行;增强可靠性,通过流式处理和重试机制保障测试稳定性。通过本文的示例和实践指南,测试工程师可以快速上手 LCEL,并将其融入到日常的测试工作中。随着 AI 应用的复杂度不断提升,掌握 LCEL 将成为测试工程师不可或缺的技能之一。

2025-06-14 21:24:41 701

原创 RAG实战:基于LangChain的《肖申克的救赎》知识问答系统构建指南

通过本次实战,我们成功构建了一个基于《肖申克的救赎》文档的智能问答系统。作为测试工程师,掌握RAG技术不仅能提升测试效率,更能推动测试智能化转型。将该方案应用于实际测试文档对比不同分片策略的检索效果集成到现有的测试自动化框架中。

2025-06-12 23:57:29 1089

原创 RAG技术全解析:从概念到实践,构建高效语义检索系统——嵌入模型与向量数据库搭建指南

RAG技术通过引入外部知识库和高效检索机制,显著提升了大模型的输出质量与适用性。嵌入模型与向量数据库的选型与搭建是RAG系统的核心环节。通过本文的指南,开发者可以快速构建从数据预处理到生成的全流程系统,并在问答、推荐、智能客服等场景中实现落地。其核心思想是通过外部知识库动态增强大语言模型(LLM)的生成能力,解决传统模型知识过时、幻觉(Hallucination)等问题。通过以上步骤与实践,技术团队可高效实现RAG系统的开发与优化,为各类知识驱动型应用奠定坚实基础。

2025-06-11 23:31:33 1233

原创 RAG系统向量数据库选型与Prompt Engineering鲁棒性测试实践

RAG与Prompt Engineering是推动AI应用落地的两大支柱,分别考验工程师对底层架构与系统安全的把控。测试工程师应深入理解向量数据库的能力边界,系统性设计Prompt测试用例,为AI系统的稳定、安全运行保驾护航!你们的测试不仅是最后一道防线,更是AI产品可持续创新的基石。欢迎留言交流你在RAG与Prompt Engineering测试实践中的心得与难题!

2025-06-10 22:32:37 885

原创 RAG、Fine-Tuning 与 Prompt Engineering 通俗对比与测试工程师实战要点

通过全面的测试用例,评估这三种方案在不同场景下的表现和边界,发现潜在风险,保障AI系统在生产环境中的。希望本分析能帮助你从测试工程师的角度,,在项目中做出适合业务的技术选型!,为产品质量和用户体验保驾护航。

2025-06-10 22:30:52 844

原创 LangChain + LangSmith + DeepSeek 入门实战:构建代码生成助手

system_template = "将以下用户输入的信息转化为{language}代码"

2025-06-09 23:19:40 500

原创 测试工程师的AI测试开发进阶:LangChain在多测试领域的实战与思考

核心结论:LangChain等框架将AI能力转化为测试工程师的生产力工具。Python与数据处理基础(如JSON、Pandas)。API调用与LLM集成技巧(如requests、Prompt优化)。LangChain框架应用(如PromptTemplate、Pydantic校验)。测试工程师可快速构建AI驱动的测试流程,提升效率并拓展职业边界。行动建议从单元测试入手:用LLM生成用例,验证结构化输出校验效果。逐步集成到现有框架:先尝试在pytest中参数化LLM生成的用例。关注质量风险。

2025-06-07 17:13:25 735

原创 LLM模型评测方法全解析:测试工程师必备的实战指南

金句:优秀的评测不是为了证明模型"能做什么",而是为了发现它"不能做什么"将模型质量提升纳入可度量的工程范畴为AI决策提供可靠的数据支撑在AI产品生命周期中扮演核心角色行动号召:立即使用LLMBox搭建您的首个评测体系,用数据驱动AI价值落地附录:收集了一些大模型评测的资料,已上传云盘,链接:https://pan.quark.cn/s/7685174a90b2将持续收集更新。

2025-06-06 00:00:15 1667

原创 打造高效多模态RAG系统:原理与评测方法详解

检索:从大规模文本数据库中查找与用户问题相关的片段。生成:将检索到的文本输入大语言模型(LLM),生成最终答案。忽略非文本信息:无法处理图像、表格等非结构化数据。上下文理解受限:仅依赖文本可能导致信息缺失或歧义。多模态RAG系统的评测是确保其有效性和可靠性的重要环节。通过EvalScope等框架,测试工程师可以全面评估系统的忠实度相关性和正确性,并针对性优化。本文提供了从文档解析、向量存储到生成评测的完整实践流程,结合代码示例与评测结果分析,帮助工程师快速构建高效的多模态RAG系统。

2025-06-05 23:53:27 1013

原创 LangChain 入门指南:基于 DeepSeek 模型构建对话流程(保姆级)

LangChain 的核心组件使用方法如何构建可扩展的对话流程Prompt 工程的基本实践与第三方大模型 API 的集成技巧添加用户身份验证模块实现多意图并行处理开发 Web 交互界面完整代码已通过验证,可直接在您的项目中使用。记得替换 API 密钥并根据业务需求调整 Prompt 模板。

2025-06-05 20:59:45 677

原创 LangChain组件库:测试工程师的AI自动化实战指南

LangChain的组件库并非孤立存在,而是通过灵活组合形成强大的测试生态系统。用例生成→向量检索→RAG增强→Agent执行日志分析→嵌入模型→文档分割→缺陷预测行动建议从单组件实践开始:选择1-2个组件(如文档加载器+输出解析器)快速落地。逐步构建组件链:将向量检索与RAG结合,实现知识驱动的用例生成。关注性能与成本:通过回调监控模型调用开销,优化高消耗环节。通过LangChain的组件化设计,测试工程师不仅能提升自动化效率,还能在AI时代掌握测试流程的主动权。

2025-06-04 00:40:29 1023

原创 测试工程师必读:LLM类与Chat类大模型的区别及在LangChain中的应用实践

需要多轮交互/上下文记忆 → Chat类模型,如交互式用例生成、复杂流程调优。批量数据/单次指令任务 → LLM类模型,如数据生成、静态日志分析。得益于 LangChain 的标准化接口和强大集成能力,测试自动化团队可灵活切换不同模型、动态管理上下文,极大提升测试效率与智能化水平。

2025-06-03 22:00:10 930

原创 LangChain输出格式化实践:提升测试工程师LLM开发效率的完整指南

实现方式LLM输出原始文本 → 正则表达式提取关键字段 → 手动构建JSON对象 → Schema校验技术特点灵活性高:支持任意非结构化文本的解析兼容性强:适配历史遗留系统的输出格式开发复杂度高:需维护复杂的解析逻辑典型代码结构import repattern = r"方法:(.*?)\n描述:(.*?)\n步骤:(.*?)\n预期结果:(.*)"return {")],

2025-06-02 22:12:55 715

原创 测试工程师的LLM应用避坑指南:Token ≠ 字数!成本控制与实战技巧

Token是LLM处理文本的最小单元,不等同于“字符”或“单词”。模型内部切分规则英文:单词、符号、子词(如“rocks”可能拆分为“rock”+“s”)。中文:单个汉字通常为1 Token,但标点、表情符号、换行符等均独立计数。若需支持新编码(如特殊符号),可通过创建命名空间包:my_tiktoken_extension/定义编码规则:from tiktoken import Encoding。

2025-06-01 13:45:47 563

原创 LangChain Memory机制:测试工程师的AI应用开发利器

告别手动拼接:专注于业务逻辑设计提升测试效率:减少重复输入,避免上下文丢失构建复杂流程:适配多轮对话、分支逻辑等高级场景行动起来从一个简单的测试用例生成场景开始,尝试用 Memory 管理上下文将 Memory 集成到现有的测试框架中(如 Pytest)探索更复杂的测试流程(如日志分析 + 用例生成 + 异常处理)LangChain 的 Memory 机制,不仅是代码的简化工具,更是测试工程师在 AI 时代的核心竞争力。

2025-05-31 21:55:45 1233

原创 测试工程师学LangChain之promptTemplate 实战笔记

Prompt 是与大模型沟通的“语言”,而 LangChain 的是自动化生成高质量 Prompt的工具。对于追求效率的测试工程师来说,掌握它不仅能节省时间,还能提升测试设计的标准化程度。从一个简单的测试用例模板开始尝试在 Jupyter 中运行代码示例逐步将模板应用到实际项目中大模型不是万能的,但它是测试工程师的强力助手。而和 OpenAI SDK 的结合,正是连接你和模型的桥梁。

2025-05-30 17:14:55 1149

原创 国产化文本向量化技术选型与LangChain集成实战指南,测试工程师如何构建高效检索系统

1. 选型原则优先本地化:在满足性能前提下,优先选择支持本地部署的技术(如Piccolo2、acge_text)。场景驱动:根据长文本、多语言、资源限制等需求细化选型。2. 实践建议小规模验证:在业务数据上测试Top-3候选技术,对比召回率与响应时间。监控与迭代:通过LangChain的LangSmith工具跟踪调用性能,定期更新技术版本。通过以上步骤,测试工程师可高效完成国产文本向量化技术的选型与集成,构建稳定、安全的智能问答系统。

2025-05-29 09:44:16 594

原创 测试工程师如何利用LangChain提升AI测试效能——以DeepSeek大模型为例的系统解析

自定义请求:每次都需手动处理API参数拼接、请求发送、响应解析与异常处理。新增功能意味着重复劳动与潜在隐患。LangChain框架:将这些流程高度封装。只需配置Prompt、模型、链式结构,即可一键调用复杂AI能力。"请基于以下需求,生成5个详尽的测试用例,覆盖正常、异常和边界场景:\n{requirements}"result = chain.invoke({"requirements": "用户注册,手机号唯一,密码复杂度要求高。

2025-05-28 08:54:54 372

原创 Jupyter+大模型助力测试工程师:一键提升用例、分析与自动化(保姆级全流程)

环境准备:确认 Python、JupyterLab、大模型 SDK 均装好。API 配置安全:优先用 getpass 或环境变量。用 Notebook 做到:AI 批量生成用例→自动化执行→一键分析结果。团队协作:所有 Notebook、脚本、数据、环境文件统一用 Git 和 requirements.txt 管理。持续复盘:遇到问题及时反馈优化 prompt,让 AI 成为你的生产力伙伴。

2025-05-27 00:18:15 954

原创 测试工程师学习 Python 应用 LLM 的合理深度:科学与效率兼顾的建议

测试工程师无需精通 Python,只需掌握基础语法、文件操作、requests 调用即可用 LLM 高效提升测试效率。案例:用 Python 脚本调用 LLM 生成测试用例,再用接口测试工具验证。学习重点放在数据处理、API 调用,不必深入面向对象和高级特性。案例:用json处理 LLM 返回的测试步骤,直接集成到测试框架中。合理分配时间,把更多精力放在实际测试场景与 LLM 应用创新上,避免陷入过度学习的误区。案例:开发一个 LLM 辅助测试工具,自动回答测试问题。结论。

2025-05-25 22:23:10 781

原创 测试工程师如何通俗理解和入门RAG:从“查资料”到“写答案”的智能升级

在接口自动化测试中,token过期后应自动调用鉴权接口获取新token,并在测试框架中集成token刷新机制。,就像“先查手册,再用自己的话写报告”。:你已经掌握了Embedding技术,能将文档、代码、测试用例等离散信息转化为向量,用于相似度匹配。:将你的测试文档、缺陷记录、用例库等转化为AI可检索的“知识库”。:就像把纸质文档扫描成电子版,再贴上标签,方便快速查找。:将检索到的文档片段和原始问题合并,生成自然流畅的答案。:将团队的测试文档、缺陷记录、用例库等转化为向量数据库。

2025-05-25 22:09:41 1290

原创 测试工程师如何理解与应用 Embedding:从原理到实战的通俗指南

Embedding不是遥不可及的AI黑科技,而是每一位测试工程师都能驾驭的“数字罗盘”。它让我们从“手动比对”走向“智能分析”,从“经验驱动”迈向“数据驱动”。掌握Embedding,你不仅能提升测试效率,还能在智能化浪潮中抢占先机。现在,就从一个简单的相似度计算开始,开启你的Embedding测试之旅吧!如果你对具体实现细节、模型选型或更多测试场景的落地方法感兴趣,欢迎留言交流!

2025-05-24 21:56:30 908

原创 LightRAG:测试工程师的轻量级知识库实践超级指南

LightRAG 让测试工程师轻松构建、维护多格式知识库,助力测试智能化升级!极简 ingest:支持 md/pdf/txt 一键导入,跨格式内容统一检索自动化集成:结合 Python API,轻松嵌入测试脚本、CI/CD 流程高效落地:无需格式转换,无缝融合企业现有文档资产进阶可扩展:支持插件开发,满足自定义格式和场景需求。

2025-05-23 17:41:04 864

原创 Minion-Agent:软件测试领域的智能自动化实践

是一款多模型支持、可扩展的通用智能体框架,其核心能力覆盖浏览器自动化、MCP工具链、任务规划与多Agent协作等场景。在软件测试领域的应用价值通过灵活集成测试工具链(如接口调用、浏览器操作),支持自动化测试、回归测试等场景。基于自然语言指令驱动测试流程,降低脚本编写门槛。结合大模型能力,实现测试报告生成、异常分析等智能化辅助功能。核心目标:为测试工程师提供模块化工具扩展和流程自动化的技术框架,而非限定于测试领域的专用解决方案。Minion-Agent 作为一款多场景通用智能体框架。

2025-05-22 15:59:29 960

基于 MCP 协议的接口测试:发送请求与响应断言,测试工程师看过来 配套资源

MCP 服务器的功能实现 在 api_test_mcp_server.py 文件中,核心功能划分为两个工具模块:请求工具 和 断言工具。

2025-04-23

MCP实践第一步-磕磕碰碰搭环境配套资源

MCP实践第一步--磕磕碰碰搭环境配套资源

2025-04-21

测试工程师+用例生成+django

1.支持新增、删除、编辑、查询功能的功能测试用例生成; 2.django编写,部署简单,只需安装依赖库,使用python manage.py runserver即可运行

2025-04-16

deepseek用例生成+测试工程师智能助手

1.通过提取docx需求文档有效标题的正文内容、表格及图片OCR结果,结合动态生成的提示词进行功能测试用例生成; 2.通过提取excel、yml或json格式的接口文档,结合提示词生成接口测试用例; 3.用例以json形式预览,支持导出为md、excel、json等格式; 4.安装部署简单,只需python环境即可,安装依赖库后即可运行; 5.需替换脚本里的api-key,模型调用阿里云百炼deepseek-r1的接口;

2025-04-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除