

Geometric Progression: Further Analysis of Geometry
using the Autodesk Revit 2012 API
Scott Conover - Autodesk

In Revit 2012, we introduced new powerful tools to the API for geometry analysis,
calculation and display. In this lecture, you will get an introduction to the new API toolset
and see examples and recommendations on their use. One set of new APIs offers the
ability to create three-dimensional construction geometry. Others include new analysis
tools such as Boolean operations, extrusion analyzers, and room and space geometry
calculators targeted towards specific kinds of problems and calculations. This class will
also highlight some new geometric capabilities related to specific entity types such as
construction parts, walls, point clouds, and energy analysis.

Learning	
 Objectives	

At the end of this class, you will be able to:

• Extract and analyze the geometry of existing Revit elements

• Create and manipulate temporary curve and solid geometry

• Find elements by 3D intersection

• Apply an ExtrusionAnalyzer to geometry

• Utilize parts to analyze geometry of HostObjects and their layers

• Extract and analyze the boundary geometry of rooms and spaces

• Analyze the geometry of point clouds

	

About	
 the	
 Speaker
Scott is a Software Development Manager for Autodesk, leading the effort to expand the
Autodesk® Revit® API. For 12 years, he has used customization interfaces to parametric 3D CAD
systems in order to automate repetitive tasks, extend the application user interface, and transfer
data between the CAD application and different data formats. Since joining Autodesk, he has
worked on the design, implementation, and testing of Revit APIs; including most recently, on the
design of the 2012 geometry API tools and IFC open source effort. Scott holds a Master of
Computer Systems Engineering degree from Northeastern University with a concentration on
CAD/CAM/CAE. 	

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

2

Introduction	

Last year at Autodesk University, I presented a course: “Analyzing Geometry of Buildings using the
Autodesk Revit API”. In this course I covered the fundamentals of geometry extraction and
specific toolsets like ray tracing, material quantity extraction, and use of transforms and
coordinates.

In Revit 2012, Autodesk introduced new powerful tools to the API for geometry analysis,
calculation and display. One set of new tools offers the ability to create three-dimensional
construction geometry. Others include new analysis tools such as Boolean operations, extrusion
analyzers, and room and space geometry calculators targeted towards specific kinds of problems
and calculations. This handout also highlights some new geometric capabilities related to specific
entity types such as construction parts, walls, point clouds, and energy analysis.

Wiki	
 documentation	

Most of the material presented today is available in the API developers guide hosted on the
Autodesk wikihelp system. The wikihelp system allows Autodesk employees, partners, vendors
and customers to contribute information, tips and techniques to the wider user community. For the
Revit API developer, the Developer’s guide contains valuable overviews and useful code snippets
covering all of the new Revit 2012 API features as well as most other Revit API capabilities.
Please consider the Developer’s Guide when learning more about Revit programming, and
consider uploading your own examples and tips when you find something that could benefit the
wider development community. The section heading in this handout include links to the relevant
wiki topics for each section.

Fundamentals	

The first part of this handout deals with the extraction of element geometry. Although this was
covered thoroughly in a previous course, there are some new utilities and capabilities in Revit 2012
to be highlighted. This information provided also should help with concepts introduced later in the
specific toolsets.

Extraction	
 of	
 Element	
 geometry	

The indexed property Element.Geometry[] can be used to pull the geometry of any model element
(3D element). This applies both to system family instances such as walls, floors and roofs, and
also to family instances of many categories, e.g. doors, windows, furniture, or masses.

The extracted geometry is returned to you as Autodesk.Revit.DB.GeometryElement. You can look
at the geometry members of that element by iterating the .Objects property.

Typically, the objects returned at the top level of the extracted geometry will be one of:

• Solid – a boundary representation made up of faces and edges
• Mesh – a 3D array of triangles
• Curve – a bounded 3D curve
• Point – a visible point datum at a given 3D location
• PolyLine – a series of line segments defined by 3D points
• GeometryInstance – an instance of a geometric element positioned within the element

This figure illustrates the hierarchy of objects found by geometry extraction.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

3

Curves	

A curve represents a path in 2 or 3 dimensions in the Revit model. Curves may represent the
entire extent of an element’s geometry (e.g. CurveElements) or may appear as a single piece of
the geometry of an element (e.g. the centerline of a wall or duct). Curves and collections of curves
are used as inputs in many element creation methods in the API.

Curve	
 Parameterization	

Curves in the Revit API can be described as mathematical functions of an input parameter “u”,
where the location of the curve at any given point in XYZ space is a function of “u”.

Curves can be bound or unbound. Unbound curves have no endpoints, representing either an
infinite abstraction (an unbound line) or a cyclic curve (a circle or ellipse).

In Revit, the parameter “u” can be represented in two ways:

• A ‘normalized’ parameter. The start value of the parameter is 0.0, and the end value is 1.0.
For some curve types, this makes evaluation of the curve along its extents very easy, for
example, the midpoint of a line is at parameter 0.5. (Note that for more complex curve
equations like Splines this assumption cannot always be made).

• A ‘raw’ parameter. The start and end value of the parameter can be any value. For a given
curve, the value of the minimum and maximum raw parameter can be obtained through
Curve.get_EndParameter(int) (C#) or Curve.EndParameter(int) (VB.NET). Raw
parameters are useful because their units are the same as the Revit default units (feet). So
to obtain a location 5 feet along the curve from the start point, you can take the raw
parameter at the start and add 5 to it. Raw parameters are also the only way to evaluate
unbound curves.

The methods Curve.ComputeNormalizedParameter() and Curve.ComputeRawParameter()
automatically scale between the two parameter types. The method Curve.IsInside() evaluates a
raw parameter to see if it lies within the bounds of the curve.

You can use the parameter to evaluate a variety of properties of the curve at any given location:

• The XYZ location of the given curve. This is returned from Curve.Evaluate(). Either the
raw or normalized parameter can be supplied. If you are also calling

GeometryElement	

Solids	

Faces	

Edges	

Meshes	
 GeometryInstances	

Nested	
 Solids,	

Meshes,	
 Curves,	

Polylines	

Nested	

GeometryInstances	

More	
 nes=ng...	

Curves	
 Points	
 PolyLines	

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

4

ComputeDerivatives(), this is also the .Origin property of the Transform returned by that
method.

• The first derivative/tangent vector of the given curve. This is the .BasisX property of the
Transform returned by Curve.ComputeDerivatives().

• The second derivative/normal vector of the given curve. This is the .BasisY property of the
Transform returned by Curve.ComputeDerivatives().

• The binormal vector of the given curve, defined as the cross-product of the tangent and
normal vector. This is the .BasisZ property of the Transform returned by
Curve.ComputeDerivatives().

All of the vectors returned are non-normalized (but you can normalize any vector in the Revit API
with XYZ.Normalize()). Note that there will be no value set for the normal and binormal vector
when the curve is a straight line. You can calculate a normal vector to the straight line in a given
plane using the tangent vector.

The API sample “DirectionCalculation” uses the tangent vector to the wall location curve to find
exterior walls that face south.

Finding and highlighting south facing exterior walls

Curve	
 types	

Revit uses a variety of curve types to represent curve geometry in a document. These include:

Curve type Revit API class Definition Notes

Bound line Line A line segment defined by its
endpoints.

Obtain endpoints from
Curve.get_Endpoint()

Unbound
line

Line An infinite line defined by a
location and direction

Identify these with
Curve.IsBound.

Evaluate point and tangent
vector at raw parameter= 0 to
find the input parameters for the
equation of the line.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

5

Arc Arc A bound circular arc Begin and end at a certain
angle. These angles can be
obtained by the raw parameter
values at each end of the arc.

Circle Arc An unbound circle Identify with Curve.IsBound.

Use raw parameter for
evaluation (from 0 to 2π)

Elliptical
arc

Ellipse A bound elliptical segment

Ellipse Ellipse An unbound ellipse Identify with Curve.IsBound.
Use raw parameter for
evaluation (from 0 to 2π)

NURBS NurbSpline A non-uniform rational B-
spline

Used for splines sketched in
various Revit tools, plus
imported geometry

Hermite HermiteSpline A spline interpolate between
a set of points

Used for tools like Curve by
Points and flexible ducts/pipes,
plus imported geometry

Mathematical representations of all of the Revit curve types can be found on the wiki.

Curve	
 analysis	
 and	
 processing	

There are several Curve members which are tools suitable for use in geometric analysis. In some
cases, these APIs do more than you might expect by a quick review of their names.

Intersect()	

The Intersect method allows you compare two curves to find how they differ or how they are
similar. It can be used in the manner you might expect, to obtain the point or point(s) where two
curves intersect one another, but it can also be used to identify:

• Collinear lines
• Overlapping lines
• Identical curves
• Totally distinct curves with no intersections

The return value identifies these different results, and the output IntersectionSetResult contains
information on the intersection point(s).

Project()	

The Project method projects a point onto the curve and returns information about the nearest point
on the curve, its parameter, and the distance from the projection point.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

6

Tessellate()	

This splits the curve into a series of linear segments, accurate within a default tolerance. For
Curve.Tessellate(), the tolerance is slightly larger than 1/16”. This tolerance of approximation is
the tolerance used internally by Revit as adequate for display purposes.

Note that only lines may be split into output of only two tessellation points; non-linear curves will
always output more than two points even if the curve has an extremely large radius which might
mathematically equate to a straight line.

Curve	
 creation	

Curves are often needed as inputs to Revit API methods. Curves can be created in several ways:

• Factory methods on Autodesk.Revit.Creation.Application
o NewLineBound()
o NewLineUnbound()
o NewLine()
o NewArc()
o NewEllipse()
o NewNurbSpline()
o NewHermiteSpline()

• Members of the Curve class
o Curve.Clone()
o Curve.Transformed property

Collections	
 of	
 curves	

The Revit API uses different types of collections of curves as inputs:

• CurveLoop – this represents a specific chain of curves joined end-to-end. It can represent
a closed loop or an open one. Create it using:

o CurveLoop.Create()
o CurveLoop.CreateViaCopy()
o CurveLoop.CreateViaThicken()

• CurveArray – this collection class represents an arbitrary collection of curves. Create it
using its constructor.

• CurveArrArray – this collection class is a collection of CurveArrays. When this is used, the
organization of the sub-elements of this array have meaning for the method this is passed
to; for example, in NewExtrusion() multiple CurveArrays should represent different closed
loops.

Newer API methods use .NET collections of Curves in place of CurveArray and CurveArrArray.

Solids,	
 Faces	
 and	
 Edges	

A Solid is a Revit API object which represents a collection of faces and edges. Typically in Revit
these collections are fully enclosed volumes, but a shell or partially bounded volume can also be
encountered. Note that sometimes the Revit geometry will contain unused solids containing zero
edges and faces. Check the Edges and Faces members to filter out these solids.

The Revit API offers the ability to read the collections of faces and edges, and also to compute the
surface area, volume, and centroid of the solid.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

7

Faces	

Faces in the Revit API can be described as mathematical functions of two input parameters “u”
and “v”, where the location of the face at any given point in XYZ space is a function of the
parameters. The U and V directions are automatically determined based on the shape of the given
face. Lines of constant U or V can be represented as gridlines on the face, as shown in the
example below:

U and V gridlines on a cylindrical face

You can use the UV parameters to evaluate a variety of properties of the face at any given
location:

• Whether the parameter is within the boundaries of the face, using Face.IsInside()
• The XYZ location of the given face at the specified UV parameter value. This is returned

from Face.Evaluate(). If you are also calling ComputeDerivatives(), this is also the .Origin
property of the Transform returned by that method.

• The tangent vector of the given face in the U direction. This is the .BasisX property of the
Transform returned by Face.ComputeDerivatives()

• The tangent vector of the given face in the V direction. This is the .BasisY property of the
Transform returned by Face.ComputeDerivatives().

• The normal vector of the given face. This is the .BasisZ property of the Transform returned
by Face.ComputeDerivatives().

All of the vectors returned are non-normalized.

Edge	
 and	
 face	
 parameterization	

Edges are boundary curves for a given face.

Iterate the edges of a Face using the EdgeLoops property. Each loop represents one closed
boundary on the face. Edges are always parameterized from 0 to 1. It is possible to extract the
Curve representation of an Edge with the Edge.AsCurve() and Edge.AsCurveFollowingFace()
functions.

An edge is usually defined by computing intersection of two faces. But Revit doesn’t recompute
this intersection when it draws graphics. So the edge stores a list of points - end points for a
straight edge and a tessellated list for a curved edge. The points are parametric coordinates on the
two faces. These points are available through the TessellateOnFace() method.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

8

Sections produce “cut edges”. These are artificial edges - not representing a part of the model-
level geometry, and thus do not provide a Reference.

Edge	
 direction	

Direction is normally clockwise on the first face (first representing an arbitrary face which Revit has
identified for a particular edge). But because two different faces meet at one particular edge, and
the edge has the same parametric direction regardless of which face you are concerned with,
sometimes you need to figure out the direction of the edge on a particular face.

The figure below illustrated how this works. For Face 0, the edges are all parameterized
clockwise. For Face 1, the edge shared with Face 0 is not re-parameterized; thus with respect to
Face 1 the edge has a reversed direction, and some edges intersect where both edges’
parameters are 0 (or 1).

Edge parameterization

The API sample “PanelEdgeLengthAngle” shows how to recognize edges that are reversed for a
given face. It uses the tangent vector at the edge endpoints to calculate the angle between
adjacent edges, and detect whether or not to flip the tangent vector at each intersection to
calculate the proper angle.

PanelEdgeLengthAngle results

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

9

Face	
 types	

Revit uses a variety of curve types to represent face geometry in a document. These include:

Face type Revit API class Definition Notes

Plane PlanarFace A plane defined by the origin
and unit vectors in U and V.

Cylinder CylindricalFace A face defined by extruding a
circle along an axis.

.Radius provides the “radius
vectors” – the unit vectors of the
circle multiplied by the radius
value.

Cone ConicalFace A face defined by rotation of a
line about an axis.

.Radius provides the “radius
vectors” – the unit vectors of the
circle multiplied by the radius
value.

Revolved
face

RevolvedFace A face defined by rotation of
an arbitrary curve about an
axis.

.Radius provides the unit
vectors of the plane of rotation,
there is no “radius” involved.

Ruled
surface

RuledFace A face defined by sweeping a
line between two profile
curves, or one profile curve
and one point.

Both curve(s) and point(s) can
be obtained as properties.

Hermite
face

HermiteFace A face defined by Hermite
interpolation between points.

Mathematical representations of all of the Revit face types can be found on the wiki.

Face	
 analysis	
 and	
 processing	

There are several Face members which are tools suitable for use in geometric analysis.

Intersect()	

The Intersect method computes the intersection between the face and a curve. It can be used in
to identify:

• The intersection point(s) between the two objects
• The edge nearest the intersection point, if there is an edge close to this location
• Curves totally coincident with a face
• Curves and faces which do not intersect

Project()	

The Project method projects a point on the input face, and returns information on the projection
point, the distance to the face, and the nearest edge to the projection point.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

10

Triangulate()	

The Triangulate method obtains a triangular mesh approximating the face. Similar to
Curve.Tessellate(), this mesh’s points are accurate within the input tolerance used by Revit
(slightly larger than 1/16”).

Solid	
 and	
 face	
 creation	

Solids and faces are sometimes used as inputs to other utilities. The Revit API provides several
routines which can be used to create such geometry from scratch or to derive it from other inputs.

Transformed	
 geometry	

The method

• GeometryElement.GetTransformed()

returns a copy of the input geometry element with a transformation applied. Because this
geometry is a copy, its members cannot be used as input references to other Revit elements, but it
can be used geometric analysis and extraction.

Geometry	
 creation	
 utilities	

The GeometryCreationUtilities class is a utility class that allows construction of basic solid shapes:

• Extrusion
• Revolution
• Sweep
• Blend
• SweptBlend

The resulting geometry is not added to the document as a part of any element. However, the
created Solid can be used as inputs to other API functions, including:

• As the input face(s) to the methods in the Analysis Visualization framework
(SpatialFieldManager.AddSpatialFieldPrimitive()) – this allows the user to visualize the
created shape relative to other elements in the document

• As the input solid to finding 3D elements by intersection
• As one or more of the inputs to a Boolean operation
• As a part of a geometric calculation (using, for example, Face.Project(), Face.Intersect(), or

other Face, Solid, and Edge geometry methods)

The following example uses the GeometryCreationUtilities class to create cylindrical shapes based
on a location and height. This might be used, for example, to create volumes around the ends of a
wall in order to find other walls within close proximity to the wall end points:

private	
 Solid	
 CreateCylindricalVolume(XYZ	
 point,	
 double	
 height,	
 double	
 radius)
{
	
 	
 	
 	
 //	
 build	
 cylindrical	
 shape	
 around	
 endpoint
	
 	
 	
 	
 List<CurveLoop>	
 	
 curveloops	
 =	
 new	
 List<CurveLoop>();
	
 	
 	
 	
 CurveLoop	
 circle	
 =	
 new	
 CurveLoop();	

	

 //	
 For	
 solid	
 geometry	
 creation,	
 two	
 curves	
 are	
 necessary,	
 even	
 for	
 closed	

	
 	
 	
 	
 //	
 cyclic	
 shapes	
 like	
 circles
	
 	
 	
 	
 circle.Append(m_app.Create.NewArc(point,	
 radius,	
 0,	
 Math.PI,	
 XYZ.BasisX,	

XYZ.BasisY));
	
 	
 	
 	
 circle.Append(m_app.Create.NewArc(point,	
 radius,	
 Math.PI,	
 2	
 *	
 Math.PI,	
 XYZ.BasisX,	

XYZ.BasisY));

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

11

	
 	
 	
 	
 curveloops.Add(circle);	

	

	
 	
 	
 	

	
 	
 	
 	
 Solid	
 createdCylinder	
 =	
 	

GeometryCreationUtilities.CreateExtrusionGeometry(curveloops,	
 XYZ.BasisZ,	
 height);
	
 	
 	
 	
 	

	
 	
 	
 	
 return	
 createdCylinder;
}

Boolean	
 operations	

The BooleanOperationsUtils class provides methods for combining a pair of solid geometry
objects.

The ExecuteBooleanOperation() method takes a copy of the input solids and produces a new
solid as a result. Its first argument can be any solid, either obtained directly from a Revit element
or created via another operation like GeometryCreationUtils.

The method ExecuteBooleanOperationModifyingOriginalSolid() performs the boolean operation
directly on the first input solid. The first input must be a solid which is not obtained directly from a
Revit element. The property GeometryObject.IsElementGeometry can identify whether the solid is
appropriate as input for this method.

Options to both methods include the operations type: Union, Difference, or Intersect. The following
example demonstrates how to get the intersection of two solids and then find the volume.

private	
 void	
 ComputeIntersectionVolume(Solid	
 solidA,	
 Solid	
 solidB)
{
	
 	
 Solid	
 intersection	
 =	
 BooleanOperationsUtils	

	
 	
 	
 	
 ExecuteBooleanOperation(solidA,	
 solidB,	

	
 	
 	
 	
 	
 	
 BooleanOperationsType.Intersect);	

	
 	
 double	
 volumeOfIntersection	
 =	
 intersection.Volume;
}

Meshes	

A mesh is a collection of triangular boundaries which collectively forms a 3D shape. Meshes are
typically encountered inside Revit element geometry if those elements were created from certain
import operations or inside topography surfaces. You can also obtain Meshes as the result of
calls to Face.Triangulate() for any given Revit face.

A mesh representing a torus

The following code sample illustrates how to get the geometry of a Revit face as a Mesh:

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

12

Extracting the geometry of a mesh

private void GetTrianglesFromFace(Face face)
{
 // Get mesh
 Mesh mesh = face.Triangulate();
 for (int i = 0; i < mesh.NumTriangles; i++)
 {
 MeshTriangle triangle = mesh.get_Triangle(i);
 XYZ vertex1 = triangle.get_Vertex(0);
 XYZ vertex2 = triangle.get_Vertex(1);
 XYZ vertex3 = triangle.get_Vertex(2);
 }
}

Note that the approximation tolerance used for Revit display purposes is always used by the
Triangulate() method when constructing the Mesh.

PolyLines	

A polyline is a collection of line segments defined by a set of coordinate points. These are typically
encountered in imported geometry. The PolyLine class offers the ability to read the coordinates:

• PolyLine.NumberOfCoordinates – the number of points in the polyline
• PolyLine.GetCoordinate() – gets a coordinate by index
• PolyLine.GetCoordinates() – gets a collection of all coordinates in the polyline
• PolyLine.Evaluate() – given a normalized parameter (from 0 to 1) evaluates an XYZ point

along the extents of the entire polyline

Points	

A point represents a visible coordinate in 3D space. These are typically encountered in mass
family elements like ReferencePoint. The Point class provides read access to its coordinates, and
an ability to obtain a reference to the point for use as input to other functions.

GeometryInstances	

A GeometryInstance represents a set of geometry stored by Revit in a default configuration, and
then transformed into the proper location as a result of the properties of the element. The most
common situation where GeometryInstances are encountered is in Family instances. Revit uses
GeometryInstances to allow it to store a single copy of the geometry for a given family and reuse it
in multiple instances.

Note that not all Family instances will include GeometryInstances. When Revit needs to make a
unique copy of the family geometry for a given instance (because of the effect of local joins,
intersections, and other factors related to the instance placement) no GeometryInstance will be
encountered; instead the Solid geometry will be found at the top level of the hierarchy.

A GeometryInstance offers the ability to read its geometry through the GetSymbolGeometry() and
GetInstanceGeometry() methods. These methods return another
Autodesk.Revit.DB.GeometryElement which can be parsed just like the first level return.

GetSymbolGeometry() returns the geometry represented in the coordinate system of the family.
Use this, for example, when you want a picture of the “generic” table without regards to the
orientation and placement location within the project. This is also the only overload which returns
the actual Revit geometry objects to you, and not copies. This is important because operations
which use this geometry as input to creating other elements (for example, dimensioning or
placement of face-based families) require the reference to the original geometry.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

13

GetInstanceGeometry() returns the geometry represented in the coordinate system of the project
where the instance is placed. Use this, for example, when you want a picture of the specific
geometry of the instance in the project (for example, ensuring that tables are placed parallel to the
walls of the room). This always returns a copy of the element geometry, so while it would be
suitable for implementation of an exporter or a geometric analysis tool, it would not be appropriate
to use this for the creation of other Revit elements referencing this geometry.

There are also overloads for both GetInstanceGeometry() and GetSymbolGeometry() that
transform the geometry by any arbitrary coordinate system. These methods always return copies
similar to GetInstanceGeometry().

The GeometryInstance also stored a transformation from the symbol coordinate space to the
instance coordinates. This transform is accessible as the Transform property. It is also the
transformation used when extracting a the copy of the geometry via GetInstanceGeometry().

The same symbol geometry placed at a different instance transform

Instances may be nested several levels deep for some families. If you encounter nested instances
they may be parsed in a similar manner as the first level instance.

Example:	
 Placing	
 corbel	
 on	
 correct	
 face	

This example demonstrates how to parse the geometry of family instances and correctly use the
members of GeometryInstance to obtain a useful reference for placement of a different face-based
family. Because a reference is needed, the symbol geometry has to be used, and transforms
applied where necessary.

	

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

14

Geometry	
 Analysis	
 Tools	

The following tools were discussed in the previous course and are described in detail on wiki:

• Finding geometry by ray projection
• Material quantity takeoff
• Making temporary changes for geometric calculations
• Bounding box filters

The following tools are described in this course and are new in 2012:

• Temporary solid geometry – creation of Solid geometry was described above
• Boolean operations – use of Boolean operations to combine Solid geometry was described

above
• Element intersection filters
• Extrusion analysis
• Element.GetGeneratingElementIds
• HostObjects
• Parts
• Room & space geometry
• Energy analytical model
• Point cloud analysis

Element	
 intersection	
 filters	

The element filters:

• ElementIntersectsElementFilter
• ElementIntersectsSolidFilter

pass elements whose actual 3D geometry intersects the 3D geometry of the target object.

With ElementIntersectsElementFilter, the target object is another element. The intersection is
determined with the same logic used by Revit to determine if an interference exists during
generation of an Interference Report. (This means that some combinations of elements will never
pass this filter, such as concrete members which are automatically joined at their intersections).
Also, elements which have no solid geometry, such as Rebar, will not pass this filter.

With ElementIntersectsSolidFilter, the target object is any solid. This solid could have been
obtained from an existing element, created from scratch using the routines in
GeometryCreationUtilities, or the result of a secondary operation such as a Boolean operation.
Similar to the ElementIntersectsElementFilter, this filter will not pass elements which lack solid
geometry.

Both filters can be inverted to match elements outside the target object volume.

Both filters are slow filters, and thus are best combined with one or more quick filters such as class
or category filters.

In this example an input solid is constructed to represent the required clearance for the approach
to a door (as per the Americans with Disabilities Act), and an ElementIntersectsSolidFilter finds
physical elements which intersect the volume.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

15

/// <summary>
/// Finds any Revit physical elements which interfere with the target solid region surrounding a
door.
/// </summary>
/// <remarks>This routine is useful for detecting interferences which are violations of the
Americans with
/// Disabilities Act or other local disabled access codes.</remarks>
/// <param name="doorInstance">The door instance.</param>
/// <param name="doorAccessibilityRegion">The accessibility region calculated to surround the
approach of the door.</param>
/// <returns>A collection of interfering element ids.</returns>
private ICollection<ElementId> FindElementsInterferingWithDoor(FamilyInstance doorInstance, Solid
doorAccessibilityRegion)
{
 // Setup the filtered element collector for all document elements.
 FilteredElementCollector interferingCollector
= new FilteredElementCollector(doorInstance.Document);

 // Only accept element instances
 interferingCollector.WhereElementIsNotElementType();

 // Exclude intersections with the door itself or the host wall for the door.
 List<ElementId> excludedElements = new List<ElementId>();
 excludedElements.Add(doorInstance.Id);
 excludedElements.Add(doorInstance.Host.Id);
 ExclusionFilter exclusionFilter = new ExclusionFilter(excludedElements);
 interferingCollector.WherePasses(exclusionFilter);

 // Set up a filter which matches elements whose solid geometry intersects with the accessibility
region
 ElementIntersectsSolidFilter intersectionFilter
= new ElementIntersectsSolidFilter(doorAccessibilityRegion);
 interferingCollector.WherePasses(intersectionFilter);

 // Return all elements passing the collector
 return interferingCollector.ToElementIds();
}

Extrusion	
 analysis	

The utility class ExtrusionAnalyzer allows you to attempt to “fit” a given piece of geometry into the
shape of an extruded profile. An instance of this class is a single-time use class which should be
supplied a solid geometry, a plane, and a direction. After the ExtrusionAnalyzer has been
initialized, you can access the results through the following members:

• The GetExtrusionBase() method returns the calculated base profile of the extruded solid
aligned to the input plane.

• The CalculateFaceAlignment() method can be used to identify all faces from the original
geometry which do and do not align with the faces of the calculated extrusion. This could be
useful to figure out if a wall, for example, has a slanted join at the top as would be the case if
there is a join with a roof. If a face is unaligned, something is joined to the geometry that is
affecting it.

• To determine the element that produced the non-aligned face, pass the face to
Element.GetGeneratingElementIds(). For more details on this utility, see the following
section.

The ExtrusionAnalyzer utility works best for geometry which are at least somewhat “extrusion-like”,
for example, the geometry of a wall which may or may not be affected by end joins, floor joins, roof
joins, openings cut by windows and doors, or other modifications. Rarely for specific shape and
directional combinations the analyzer may be unable to determine a coherent face to act as the
base of the extrusion – an InvalidOperationException will be thrown in these situations.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

16

In this example, the extrusion analyzer is used to calculate and outline a shadow formed from the
input solid and the sun direction:

 /// <summary>
 /// Draw the shadow of the indicated solid with the sun direction specified.
 /// </summary>
 /// <remarks>The shadow will be outlined with model curves added to the document.
 /// A transaction must be open in the document.</remarks>
 /// <param name="document">The document.</param>
 /// <param name="solid">The target solid.</param>
 /// <param name="targetLevel">The target level where to measure and draw the shadow.</param>
 /// <param name="sunDirection">The direction from the sun (or light source).</param>
 /// <returns>The curves created for the shadow.</returns>
 /// <throws cref="Autodesk.Revit.Exceptions.InvalidOperationException">Thrown by
ExtrusionAnalyzer when the geometry and
 /// direction combined do not permit a successful analysis.</throws>
 private static ICollection<ElementId> DrawShadow(Document document, Solid solid, Level
targetLevel, XYZ sunDirection)
 {
 // Create target plane from level.
 Plane plane =
document.Application.Create.NewPlane(XYZ.BasisZ, new XYZ(0, 0, targetLevel.ProjectElevation));

 // Create extrusion analyzer.
 ExtrusionAnalyzer analyzer = ExtrusionAnalyzer.Create(solid, plane, sunDirection);

 // Get the resulting face at the base of the calculated extrusion.
 Face result = analyzer.GetExtrusionBase();

 // Convert edges of the face to curves.
 CurveArray curves = document.Application.Create.NewCurveArray();
 foreach (EdgeArray edgeLoop in result.EdgeLoops)
 {
 foreach (Edge edge in edgeLoop)
 {
 curves.Append(edge.AsCurve());
 }
 }

 // Get the model curve factory object.
 Autodesk.Revit.Creation.ItemFactoryBase itemFactory;
 if (document.IsFamilyDocument)
 itemFactory = document.FamilyCreate;
 else
 itemFactory = document.Create;

 // Add a sketch plane for the curves.
 SketchPlane sketchPlane =
itemFactory.NewSketchPlane(document.Application.Create.NewPlane(curves));
 document.Regenerate();

 // Add the shadow curves
 ModelCurveArray curveElements = itemFactory.NewModelCurveArray(curves, sketchPlane);

 // Return the ids of the curves created
 List<ElementId> curveElementIds = new List<ElementId>();
 foreach (ModelCurve curveElement in curveElements)
 {
 curveElementIds.Add(curveElement.Id);
 }

 return curveElementIds;
 }

/// <summary>
/// Draw the shadow of the indicated solid with the sun direction specified.
/// </summary>
/// <remarks>The shadow will be outlined with model curves added to the document.
/// A transaction must be open in the document.</remarks>

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

17

/// <param name="document">The document.</param>
/// <param name="solid">The target solid.</param>
/// <param name="targetLevel">The target level where to measure and draw the shadow.</param>
/// <param name="sunDirection">The direction from the sun (or light source).</param>
/// <returns>The curves created for the shadow.</returns>
/// <throws cref="Autodesk.Revit.Exceptions.InvalidOperationException">Thrown by ExtrusionAnalyzer
when the geometry and
/// direction combined do not permit a successful analysis.</throws>
private static ICollection<ElementId> DrawShadow(Document document, Solid solid, Level
targetLevel, XYZ sunDirection)
{
 // Create target plane from level.
 Plane plane =
document.Application.Create.NewPlane(XYZ.BasisZ, new XYZ(0, 0, targetLevel.ProjectElevation));

 // Create extrusion analyzer.
 ExtrusionAnalyzer analyzer = ExtrusionAnalyzer.Create(solid, plane, sunDirection);

 // Get the resulting face at the base of the calculated extrusion.
 Face result = analyzer.GetExtrusionBase();

 // Convert edges of the face to curves.
 CurveArray curves = document.Application.Create.NewCurveArray();
 foreach (EdgeArray edgeLoop in result.EdgeLoops)
 {
 foreach (Edge edge in edgeLoop)
 {
 curves.Append(edge.AsCurve());
 }
 }

 // Get the model curve factory object.
 Autodesk.Revit.Creation.ItemFactoryBase itemFactory;
 if (document.IsFamilyDocument)
 itemFactory = document.FamilyCreate;
 else
 itemFactory = document.Create;

 // Add a sketch plane for the curves.
 SketchPlane sketchPlane =
itemFactory.NewSketchPlane(document.Application.Create.NewPlane(curves));
 document.Regenerate();

 // Add the shadow curves
 ModelCurveArray curveElements = itemFactory.NewModelCurveArray(curves, sketchPlane);

 // Return the ids of the curves created
 List<ElementId> curveElementIds = new List<ElementId>();
 foreach (ModelCurve curveElement in curveElements)
 {
 curveElementIds.Add(curveElement.Id);
 }

 return curveElementIds;
}

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

18

The utility above can be used to compute the shadow of a given mass with respect to the current
sun and shadows settings for the view:

Element.GetGeneratingElementIds()	

This function examines relationships among elements to find the element that generated a
particular face. Most of these relationships will return a single element, for example:

• Window and door cutting walls
• Openings cutting hosts
• Face splitting faces
• Wall sweep or reveal traversing wall
• A few relationships have the potential for returning multiple elements, including:

o Walls joining to other wall(s)
o Elements extending to roof(s)

• If more than one id is returned, one of them (unspecified) is the id of the element that
generated the geometry object and the others are ids of related elements. For example, if a
wall A is joined to two walls B and C in a way that creates two end faces, and if this function is
called for one of the two end faces, it will return the ids of walls B and C.

In this example, the ExtrusionAnalyzer is used in conjunction with
Element.GetGeneratingElementIds() to find all faces that result from each element that cuts into
the standard shape of an extruded wall. The wall extruded base is displayed, and each element
modifier highlighted sequentially.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

19

CompoundStructure	
 &	
 HostObject	
 utilities	

Walls, floors, ceilings and roofs are all children of the API class HostObject. HostObject (and its
related type class HostObjAttributes) provide read only to the CompoundStructure.

The CompoundStructure class offers read and write access to a set of layers consisting of different
materials:

• CompoundStructure.GetLayers()
• CompoundStructure.SetLayers()

Normally these layers are parallel and extend the entire host object with a fixed layer width.
However, for walls the structure can also be “vertically compound”, where the layers vary at
specified vertical distances from the top and bottom of the wall. Use
CompoundStructure.IsVerticallyCompound to identify these. For vertically compound structures,
the structure describes a vertical section via a rectangle which is divided into polygonal regions
whose sides are all vertical or horizontal segments. A map associates each of these regions with
the index of a layer in the CompoundStructure which determines the properties of that region.

It is possible to use the compound structure to find the geometric location of different layer
boundaries. The method CompoundStructure.GetOffsetForLocationLine() provides the offset from
the center location line to any of the location line options (core centerline, finish faces on either
side, or core sides).

With the offset to the location line available, you can obtain the location of each layer boundary by
starting from a known location and obtaining the widths of each bounding layer using
CompoundStructure.GetLayerWidth().

Some notes about the use of CompoundStructure:

• The total width of the element is the sum of each CompoundStructureLayer's widths. You
cannot change the element's total width directly but you can change it via changing the

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

20

CompoundStructureLayer width. The index of the designated variable length layer (if
assigned) can be obtained from CompoundStructure.VariableLayerIndex.

• You must set the CompoundStructure back to the HostObjAttributes instance (using the
HostObjAttributes.SetCompoundStructure() method) in order for any change to be stored.

• Changes to the HostObjAttributes affects every instance in the current document. If you need
a new combination of layers,you will need to create a new HostObjAttributes (use
ElementType.Duplicate()) and assign the new CompoundStructure to it.

• The CompoundStructureLayer DeckProfileId, and DeckEmbeddingType, properties only work
with Slab in Revit Structure. For more details, refer to Revit Structure.

The HostObjectUtils class offers methods as a shortcut to locate certain faces of compound
HostObjects. These utilities retrieve the faces which act as the boundaries of the object's
CompoundStructure:

• HostObjectUtils.GetSideFaces() – applicable to Walls and FaceWalls; you can obtain either
the exterior or interior finish faces.

• HostObjectUtils.GetTopFaces() and HostObjectUtils.GetBottomFaces() – applicable to
roofs, floors, and ceilings.

Parts	

Part elements in Revit support the construction modeling process by letting you divide certain
elements from the design intent model into discrete parts. These parts, and any smaller parts
derived from them, can be independently scheduled, tagged, filtered, and exported. Parts can be
used by construction modelers to plan delivery and installation of pieces of more complex Revit
elements.

Parts can be generated from elements with layered structures, such as:

• Walls (excluding stacked walls and curtain walls)
• Floors (excluding shape-edited floors)
• Roofs (excluding those with ridge lines)
• Ceilings
• Structural slab foundations

Parts are dependent to elements. Parts are automatically updated and regenerated when the
original element from which they are derived is modified. Such edits might include adding/removing
layers, or changing wall type, layer thickness, wall orientation, geometry, materials, or openings.

Deleting the original element from which parts have been derived will delete all those parts as well
as any parts derived from them.

Deleting a part will also delete all other parts derived from the original element.

Copying the original element from which parts have been derived will copy all the associated parts
as well.

Parts	
 in	
 the	
 Revit	
 API	

In the Revit API, elements can be divided into parts using the PartUtils class. The static method
PartUtils.CreateParts() is used to create parts from one or more elements. Note that unlike most
element creation methods in the API, CreateParts() does not actually create or return the parts, but

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

21

rather instantiates an element called a PartMaker. The PartMaker uses its embedded rules to
drive creation of the needed parts during regeneration.

The API also offers an interface to subdivide parts. PartUtils.DivideParts() accepts as input a
collection of part ids, a collection of “intersecting element” ids (which can be layers and grids), and
a collection of curves. The routine uses the intersecting elements and curves as boundaries from
which to divide and generate new parts.

The GetAssociatedParts() method can be called to find some or all of the parts associated with an
element, or use HasAssociatedParts() to determine if an element has parts.

You can delete parts through the API either by deleting the individual part elements, or by deleting
the PartMaker associated to the parts (which will delete all parts generated by this PartMaker after
the next regeneration).

Parts can be manipulated in the Revit API much the same as they can in the Revit user interface.
For example, the outer boundaries of parts may be offset with PartUtils.SetFaceOffset().

Parts	
 as	
 a	
 geometric	
 analysis	
 tool	

The capabilities that parts offer to the Revit API developer can be useful even when you don’t wish
to store permanently the divisions as elements. Particularly, use of part creation provides easy
access to the geometry of each of the layers of materials within a compound object. If you are
looking for the boundaries, volumes, or intersections between layers, it is a natural approach to
start with dividing the elements into parts. This is especially useful for vertically compound
structures within a wall where the alternative would be to get the properties of the
CompoundStructure and interpret in the context of the host wall’s height and extents. If you wrap
the part creation into a transaction which is later cancelled, you can extract the geometry of these
layers easily for any needed processing.

In the example “PartExtents”, the target objects are split into layer-based parts and the geometry of
these parts’ edges are used to create model curves in place. If the target element has already
been split into parts or sub-parts, the code deletes extra subdivisions so that the layer geometry
can be obtained. All part-related changes are a part of a transaction which is rolled back before
the resulting curves are created.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

22

{
 public void DrawExtents(Document document, ICollection<Element> elements)
 {
 // Temp transaction to extract geometry of each layer
 Transaction tempTransaction = new Transaction(document, "Temp geometry extraction");
 tempTransaction.Start();

 // For each target element, determine if it has already been divided or not
 List<ElementId> ids = new List<ElementId>();
 foreach (Element e in elements)
 {
 // If parts aleady exist, just delete the subparts so that we can get geometry from the
layer parts
 if (PartUtils.HasAssociatedParts(document, e.Id))
 {
 DeleteExistingSubParts(document, e.Id);
 }
 // No parts exist; save ths id for part creation
 else
 {
 ids.Add(e.Id);
 }
 }

 // Create parts from the top level objects which don't have parts
 PartUtils.CreateParts(document, ids);

 // Regenerate: required to create and delete parts based on changes above
 document.Regenerate();

 // Walk the geometry of each element's parts to get the edges
 List<ICollection<Curve>> curvesToGenerate = new List<ICollection<Curve>>();
 foreach (Element element in elements)
 {
 curvesToGenerate.AddRange(GetOutlineOfElementParts(document, element.Id));
 }

 // Discard all changes
 tempTransaction.RollBack();

 // Permanent transaction to add curves along part edges
 Transaction transaction = new Transaction(document, "Outline layer volumes");
 transaction.Start();

 foreach (ICollection<Curve> curveSet in curvesToGenerate)
 {
 foreach (Curve curve in curveSet)
 {
 AddModelCurve(document, curve);
 }
 }

 transaction.Commit();
 }

 /// <summary>
 /// Deletes sub-parts of the given element, if they exist.
 /// </summary>
 /// <param name="id">The element.</param>
 private void DeleteExistingSubParts(Document document, ElementId id)
 {
 ICollection<ElementId> parts = PartUtils.GetAssociatedParts(document, id, true, false);

 foreach (ElementId partId in parts)
 {
 if (PartUtils.HasAssociatedParts(document, partId))
 {
 PartMaker maker = PartUtils.GetAssociatedPartMaker(document, partId);
 document.Delete(maker);

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

23

 }
 }
 }

 /// <summary>
 /// Gets a collection of curves outlining each part generated by the element.
 /// </summary>
 /// <param name="id">The element id.</param>
 /// <returns>The part collection.</returns>
 private ICollection<ICollection<Curve>> GetOutlineOfElementParts(Document document, ElementId
id)
 {
 List<ICollection<Curve>> curveSets = new List<ICollection<Curve>>();
 ICollection<ElementId> partIds = PartUtils.GetAssociatedParts(document, id, false, false);
 Options options = new Options();
 foreach (ElementId partId in partIds)
 {
 Element partElement = document.get_Element(partId);
 GeometryElement geomElem = partElement.get_Geometry(options);
 List<Curve> curves = new List<Curve>();

 foreach (GeometryObject geomObj in geomElem.Objects)
 {
 // We expect all part geometry is solid
 if (geomObj is Solid)
 {
 Solid solid = (Solid)geomObj;
 EdgeArray edges = solid.Edges;
 foreach (Edge edge in edges)
 {
 curves.Add(edge.AsCurve());
 }
 }
 }

 curveSets.Add(curves);
 }

 return curveSets;
 }

 /// <summary>
 /// Adds a model curve to the document aligned with the input curve.
 /// </summary>
 /// <remarks>A sketch plane needs to be calculated for the curve before it is added.</remarks>
 /// <param name="curve">The curve.</param>
 private void AddModelCurve(Document document, Curve curve)
 {
 Plane plane;
 // Linear curves have no "normal" returned by compute derivatives
 if (curve is Line)
 {
 XYZ point1 = curve.get_EndPoint(0);
 XYZ point2 = curve.get_EndPoint(1);
 XYZ tangent = (point2 - point1).Normalize();
 // Vertical line
 if (tangent.IsAlmostEqualTo(XYZ.BasisZ) || tangent.IsAlmostEqualTo(-XYZ.BasisZ))
 {
 plane = document.Application.Create.NewPlane(XYZ.BasisX, point1);
 }
 // Non-vertical line, use cross product with vertical to generate normal vector
 else
 {
 XYZ yVector = tangent.CrossProduct(XYZ.BasisZ).Normalize();
 plane = document.Application.Create.NewPlane(tangent, yVector, point1);
 }
 }
 // Non-linear curve supplies normal for sketch plane
 else

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

24

 {
 XYZ point = curve.Evaluate(0, true);
 Transform transform = curve.ComputeDerivatives(0, true);
 XYZ normal = transform.BasisZ;
 plane = document.Application.Create.NewPlane(normal, point);
 }

 // Create sketch plane
 SketchPlane sketchPlane = document.Create.NewSketchPlane(plane);

 // Create curve
 document.Create.NewModelCurve(curve, sketchPlane);
 }
}

Room	
 &	
 space	
 geometry	

The Revit API provides access to the 3D geometry of spatial elements (rooms and spaces).

The SpatialElementGeometryCalculator class can be used to calculate the geometry of a spatial
element and obtain the relationships between the geometry and the element's boundary elements.
There are 2 options which can be provided to this utility:

• SpatialElementBoundaryLocation – whether to use finish faces or boundary element
centerlines for calculation

• StoredFreeBoundaryFaces – whether to include faces which don’t map directly to a boundary
element in the results.

The results of calculating the geometry are contained in the class
SpatialElementGeometryResults. From the SpatialElementGeometryResults class, you can
obtain:

• The Solid volume representing the geometry (GetGeometry() method)
• The boundary face information (a collection SpatialElementBoundarySubfaces)

Each subface offers:

• The face of the spatial element
• The matching face of the boundary element
• The subface (the portion of the spatial element face bounded by this particular boundary

element)
• The subface type (bottom, top, or side)

Some notes about the use of this utility:

• The calculator maintains an internal cache for geometry it has already processed. If you
intend to calculate geometry for several elements in the same project you should use a single
instance of this class. Note that the cache will be cleared when any change is made to the
document.

• Floors are almost never included in as boundary elements. Revit uses the 2D outline of the
room to form the bottom faces and does not match them to floor geometry.

• Openings created by wall-cutting features such as doors and windows are not included in the
returned faces.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

25

• The geometry calculations match the capabilities offered by Revit. In some cases where Revit
makes assumptions about how to calculate the volumes of boundaries of rooms and spaces,
these assumptions will be present in the output of the utility.

In this example, a SpatialElementGeometryCalculator is used to find the bounding faces of a
room, determine the material applied to those faces, and determine total surface areas of
materials for the room.

/// <summary>
/// Calculates the surface area (per material) of the elements which
/// bound the spatial element.
/// </summary>
private void CalculateSpatialElementBoundaryAreas(SpatialElement element)
{
 // Setup options - finish face option is required to match
 // up to boundary faces
 SpatialElementBoundaryOptions options =
 new SpatialElementBoundaryOptions();
 options.StoreFreeBoundaryFaces = true;
 options.SpatialElementBoundaryLocation =
 SpatialElementBoundaryLocation.Finish;

 // Calculate results
 SpatialElementGeometryCalculator calculator =
 new SpatialElementGeometryCalculator(element.Document, options);
 SpatialElementGeometryResults results =
 calculator.CalculateSpatialElementGeometry(element);
 Solid solid = results.GetGeometry();

 if (solid != null)
 {
 // Traverse each face in the spatial element volume
 FaceArray faces = solid.Faces;
 foreach (Face face in faces)
 {
 IList<SpatialElementBoundarySubface> subfaces =
 results.GetBoundaryFaceInfo(face);
 foreach (SpatialElementBoundarySubface subface in subfaces)
 {
 Face spatialElementFace =
 subface.GetSpatialElementFace();

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

26

 // Bottom faces never have a boundary face reference.
 // Find floors with another technique.
 if (subface.SubfaceType == SubfaceType.Bottom)
 {
 double spatialElementFaceArea =
 spatialElementFace.Area;
 FindFloorBoundaries(element, options,
 spatialElementFaceArea);
 continue;
 }

 // Get material id from bounding face.
 Face boundingElementFace =
 subface.GetBoundingElementFace();
 ElementId materialElementId = boundingElementFace != null ?
 boundingElementFace.MaterialElementId : ElementId.InvalidElementId;

 // Get area frm subface
 double subFaceArea = subface.GetSubface().Area;

 // Store information
 AddSurfaceArea(materialElementId, subFaceArea);
 }
 }
 }
}

The floors are extracted with some extra work: using the bottom outline of the room, it constructs
temporary geometry extruded downward. It then uses the ElementIntersectsSolidFilter to find
floor objects which intersect this temporary geometry, and the top face of the floor (from
HostObjectUtils.GetTopFaces()) to get the face and its material.

/// <summary>
/// Find floor boundaries for a given spatial element
/// </summary>
/// <param name="element">The spatial element.</param>
/// <param name="options">The options applied to the boundary extraction.</param>
/// <param name="area">The area of the boundary face.</param>
private void FindFloorBoundaries(SpatialElement element,
 SpatialElementBoundaryOptions options,
 double area)
{
 // Get 2D boundary of element
 IList<IList<BoundarySegment>> boundarySegments =
 element.GetBoundarySegments(options);

 foreach (IList<BoundarySegment> segmentGroups in boundarySegments)
 {
 // Build volume extending just below boundary
 List<Curve> curves = new List<Curve>();
 foreach (BoundarySegment segment in segmentGroups)
 {
 curves.Add(segment.Curve);
 }
 CurveLoop curveLoop = CurveLoop.Create(curves);
 List<CurveLoop> curveLoops = new List<CurveLoop>();
 curveLoops.Add(curveLoop);

 // Volume extruded downward 1 inch
 Solid volumeOfIntersection =
 GeometryCreationUtilities.CreateExtrusionGeometry(curveLoops,
 -XYZ.BasisZ,
 1/12.0);

 // Look for floors
 FilteredElementCollector collector =
 new FilteredElementCollector(element.Document);
 // Filter by category because in-place families could be floors too.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

27

 collector.OfCategory(BuiltInCategory.OST_Floors);
 collector.WhereElementIsNotElementType();
 collector.WherePasses(new ElementIntersectsSolidFilter(volumeOfIntersection));

 // Look at intersections
 List<ElementId> materialElementIds = new List<ElementId>();
 foreach (Element intersectElement in collector)
 {
 if (intersectElement is Floor)
 {
 Floor floor = intersectElement as Floor;
 IList<Reference> topReferences =
 HostObjectUtils.GetTopFaces(floor);

 foreach (Reference reference in topReferences)
 {
 Face face =
 floor.GetGeometryObjectFromReference(reference) as Face;
 if (face != null)
 {
 ElementId materialElementId = face.MaterialElementId;
 if (!materialElementIds.Contains(materialElementId))
 materialElementIds.Add(materialElementId);
 }
 }
 }
 else
 {
 // TODO - not a floor, in-place family perhaps.
 // This case is not handled by this sample.
 }
 }

 if (materialElementIds.Count == 1)
 {
 AddSurfaceArea(materialElementIds[0], area);
 }
 else
 {
 //TODO - multiple element faces or elements found by intersection.
 // This case is not handled by this sample.
 }
 }
}

Energy	
 analytical	
 model	

The Autodesk.Revit.DB.Analysis namespace includes several classes to obtain and analyze the
contents of a project's detailed energy analysis model. The Export to gbXML and the Heating and
Cooling Loads features produce an analytical thermal model from the physical model of a building.
The analytical thermal model is composed of spaces, zones and planar surfaces that represent the
actual volumetric elements of the building.

The classes related to the detailed energy analysis model are:

• EnergyAnalysisDetailModel

• EnergyAnalysisDetailModelOptions

• EnergyAnalysisOpening

• EnergyAnalysisSpace

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

28

• EnergyAnalysisSurface

• Polyloop

Use the static method EnergyAnalysisDetailModel.Create() to create and populate the energy
analysis model. Set the appropriate options using the EnergyAnalysisDetailModelOptions. The
generated model is always returned in world coordinates, but the method TransformModel()
transforms all surfaces in the model according to ground plane, shared coordinates and true north.

The options available when creating the energy analysis detail model include:

• The level of computation for energy analysis model - NotComputed, FirstLevelBoundaries,
meaning analytical spaces and zones, SecondLevelBoundaries, meaning analytical
surfaces, or Final, meaning constructions, schedules, and non-graphical data

• Whether mullions should be exported as shading surfaces

• Whether shading surfaces will be included

• Whether to simplify curtain systems - When true, a single large window/opening will be
exported for a curtain wall/system regardless of the number of panels in the system

Note that the model will be returned exactly as Revit calculates it for export to gbXML. But the
applications are not necessarily limited to use in Energy Analysis scenarios directly. Revit’s IFC
exporter (available on Open Source) uses the second-level boundary calculation to populate the
related IFC entities.

Point	
 clouds	

The point cloud client API supports read and modification of point cloud instances within Revit.
The points supplied by the point cloud instances come from the point cloud engine, which is either
a built-in engine within Revit, or a third party engine loaded as an application. A client point cloud
API application doesn’t need to be concerned with the details of how the engine stores and serves
points to Revit. Instead, the client API can be used to create point clouds, manipulate their
properties, and read the points found matching a given filter.

The main classes related to point clouds are:

• PointCloudType - type of point cloud loaded into a Revit document. Each PointCloudType
maps to a single file or identifier (depending upon the type of Point Cloud Engine which
governs it).

• PointCloudInstance - an instance of a point cloud in a location in the Revit project.
• PointCloudFilter - a filter determining the volume of interest when extracting points.
• PointCollection - a collection of points obtained from an instance and a filter.
• PointIterator - an iterator for the points in a PointCollection.
• CloudPoint - an individual point cloud point, representing an X, Y, Z location in the

coordinates of the cloud, and a color.

Accessing	
 Points	
 in	
 a	
 Point	
 Cloud	

There are two ways to access the points in a point cloud:

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

29

1. Iterate the resulting points directly from the PointCollection return using the
IEnumerable<CloudPoint> interface

2. Get a pointer to the point storage of the collection and access the points directly in memory
in an unsafe interface

Either way, you first access a collection of points from the PointCloudInstance using the method

• PointCloudInstance.GetPoints(PointCloudFilter filter, int numPoints)

Note that as a result of search algorithms used by Revit and the point cloud engine, the exact
requested number of points may not be returned.

Although you must deal with pointers directly in the second option, there may be performance
improvements when traversing large buffers of points. However, this option is only possible from
C# and C++/CLI.

Filters	

Filters are used both to limit the volume which is searched when reading points, and also to govern
the display of point clouds. A PointCloudFilter can be created based upon a collection of planar
boundaries. The filter will check whether a point is located on the “positive” side of each input
plane, as indicated by the positive direction of the plane normal. Therefore, such filter implicitly
defines a volume, which is the intersection of the positive half-spaces corresponding to all the
planes. This volume does not have to be closed, but it will always be convex.

The display of point clouds can be controlled by assigning a filter to:

• PointCloudInstance.SetSelectionFilter()

Display of the filtered points will be based on the value of the property:

• PointCloudInstance FilterAction

If it is set to None, the selection filter is ignored. If it is set to Highlight, points that pass the filter
are highlighted. If it is set to Isolate, only points that pass the filter will be visible.

In this example, we use the filter capabilities to evaluate how well a given element aligns with
points in the point cloud. A filter is built based on a face of a wall, floor, or roof; this filter is
constructed to find points within a narrow epsilon of the element face. The matching points can be
isolated or highlighted, and a count of the matching points is returned.

Geometric Progression: Further Analysis of Geometry using the Autodesk Revit 2012 API

30

Conclusion	
 &	
 Caveats	

This handout reviewed the capabilities of some new powerful tools in the Revit API for geometry
analysis, calculation and display. These included creation of temporary geometry, Boolean
operations, extrusion analysis, and element-specific tools like spatial element geometry calculation
and parts generation. Autodesk believes that the ability for Revit add-in developers to execute on
specific geometric analyses and produce desired results is significantly improved over previous
releases as a result.

As with all programming tools where end users are involved, developers need to keep edge cases
in mind. It is certainly possible for users to model situations which don’t mesh well with the tools
and might result in failure situations. In the samples and examples provided in this course, these
situations are not handled robustly; anyone using these examples would need to consider many
more test cases than have been demonstrated here. Developers should also consider how robust
their solution should be: are there situations where it should or should not produce valid results?

