小波变换二之Haar变换

本文详细介绍了二维Haar变换的原理和步骤,包括沿着矩阵行和列进行一维Haar变换,以及在图像压缩中的应用。通过实例演示了如何对4×4图像进行Haar变换,并展示了过滤不同层级高频信息对图像质量的影响,进一步提供了MATLAB实现的代码示例。

Haar变换

这是小波变换的第二篇,我们继续谈Haar变换。在第一篇中,我们介绍了一位情况下的Haar变换,这篇博文中主要介绍二维Haar变换。最后,通过一个图像压缩的案例说明二维Haar变换的应用。

原理说明

给定一个二维信号,我们这里假设是一个 4 × 4 4\times4 4×4的图片,

f = [ 2 1 5 6 7 6 5 8 2 1 5 5 7 7 2 10 ] f=\begin{bmatrix}2&1&5&6\\7&6&5&8\\2&1&5&5\\7&7&2&10\end{bmatrix} f=27271617555268510

如何进行二维的哈尔变换呢?

步骤是这样的:(1)首先,沿着矩阵的每一行做一维的Haar变换;(2)然后,沿着矩阵的每一列做一维的哈尔变换;(3)对于每个低频分量矩阵(近似信息)重复步骤(1)和(2)直到完成指定的等级划分。下图给出了两级划分的示意图:
二维Haar变换示意图

这里的A表示近似信息(approximation coefficients),H表示水平细节信息(horizontal detail coefficients),V表示垂直细节信息(vertical detail coefficients),D表示对角线细节信息(diagonal detail coefficients)。很多数学软件中是这样称呼的,了解了这个可以帮助我们快速上手软件进行实际操作。

行分解和列分解的顺序是可以互换的,保持一致即可。

明白了基本原理,下面我们来进行实际计算,对于 f f f,(如果不清楚如何做一维高频和低频分解,可参看博文《小波变换一之Haar变换》

第一次行分解得到低频信息 L = [ 3 2 11 2 13 2 13 2 3 2 5 2 7 2 6 2 ] L=\begin{bmatrix}\frac{3}{\sqrt{2}}&\frac{11}{\sqrt{2}}\\\frac{13}{\sqrt{2}}&\frac{13}{\sqrt{2}}\\\frac{3}{\sqrt{2}}&5\sqrt{2}\\7\sqrt{2}&6\sqrt{2}\end{bmatrix} L=2

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值