Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 327680/102400 K (Java/Others)
Total Submission(s): 39810 Accepted Submission(s): 13961
Problem Description
Mr Wang wants some boys to help him with a project. Because the project is rather complex, the more boys come, the better it will be. Of course there are certain requirements.
Mr Wang selected a room big enough to hold the boys. The boy who are not been chosen has to leave the room immediately. There are 10000000 boys in the room numbered from 1 to 10000000 at the very beginning. After Mr Wang’s selection any two of them who are still in this room should be friends (direct or indirect), or there is only one boy left. Given all the direct friend-pairs, you should decide the best way.
Input
The first line of the input contains an integer n (0 ≤ n ≤ 100 000) - the number of direct friend-pairs. The following n lines each contains a pair of numbers A and B separated by a single space that suggests A and B are direct friends. (A ≠ B, 1 ≤ A, B ≤ 10000000)
Output
The output in one line contains exactly one integer equals to the maximum number of boys Mr Wang may keep.
Sample Input
4
1 2
3 4
5 6
1 6
4
1 2
3 4
5 6
7 8
Sample Output
4
2
Hint
A and B are friends(direct or indirect), B and C are friends(direct or indirect),
then A and C are also friends(indirect).
In the first sample {1,2,5,6} is the result.
In the second sample {1,2},{3,4},{5,6},{7,8} are four kinds of answers.
Author
lxlcrystal@TJU
Source
HDU 2007 Programming Contest - Final
问题链接:HDU1856 More is better
问题简述:(略)
问题分析:
计算朋友圈大小的问题,用并查集来解决。
需要对并查集模板程序进行改进,使用一个数组来存储各个子集元素的数量,合并时累加起来。
程序说明:
每次合并时,算一下最大子集元素数量,也许是一种好的做法,对于小规模数据具有时间优势。
参考链接:(略)
题记:(略)
AC的C++语言程序如下:
/* HDU1856 More is better */
#include <bits/stdc++.h>
using namespace std;
const int N = 10000000;
int f[N + 1], fcnt[N + 1], maxv;
void UFInit(int n)
{
for(int i = 1; i <= n; i++)
f[i] = i, fcnt[i] = 1;
}
int Find(int a) {
return a == f[a] ? a : f[a] = Find(f[a]);
}
void Union(int a, int b)
{
a = Find(a);
b = Find(b);
if (a != b) {
f[a] = b;
fcnt[b] += fcnt[a];
maxv = max(maxv, fcnt[b]);
}
}
int main()
{
int n, a, b;
while(~scanf("%d", &n)) {
UFInit(N);
maxv = 1;
for(int i = 1; i <= n; i++) {
scanf("%d%d", &a, &b);
Union(a, b);
}
printf("%d\n", maxv);
}
return 0;
}