题目如下:
主要是使用了DFS来找到所有满足的路径,用动态规划找到最长路径,代码如下:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <map>
using namespace std;
int a[12][12];//用于存放原始数据
int dp[12][12];//动态规划
int ans;//用于存放路径条数
//DFS算法定义
void dfs(int x, int y, int n)
{
//这是递归边界
if (x == n && y == n)
{
++ans;
return;
}
if (x + 1 <= n && dp[x + 1][y] == dp[x][y] - a[x][y]) dfs(x + 1, y, n);//向右
if (y + 1 <= n && dp[x][y + 1] == dp[x][y] - a[x][y]) dfs(x, y + 1, n);//向上
}
int main()
{
ans = 0;
int n;
//键入数据
cin >> n;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
cin >> a[i][j];
}
}
//翻转矩阵为正
for (int i = 1; i <= n; i++)
{
for (int j = i + 1; j <= n; j++)
{
swap(a[i][j], a[j][i]);
}
}
for (int i = 1; i <= n / 2; i++)
{
for (int j = 1; j <= n; j++)
{
swap(a[i][j], a[n - i + 1][j]);
}
}
dp[n][n] = a[n][n];
//动态优化用来找出一共最长路径的值
for (int i = n; i >= 1; i--)
{
for (int j = n; j >= 1; j--)
{
//切记递推公式
dp[i][j - 1] = max(dp[i][j - 1], dp[i][j] + a[i][j - 1]);
dp[i - 1][j] = max(dp[i - 1][j], dp[i][j] + a[i - 1][j]);
}
}
//DFS用来找到最长路径的条数
dfs(1, 1, n);
cout << ans << " " << dp[1][1] << endl;
system("pause");
return 0;
}