蓝桥杯练习——最大路径值

本文介绍了一种结合动态规划和深度优先搜索(DFS)的算法,用于在一个特定的矩阵中寻找从起点到终点的所有可能路径,并计算出最长路径的数量及路径值。通过递归的DFS算法遍历所有满足条件的路径,再利用动态规划优化过程,找到最长路径的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目如下:

动态规划看这: https://blog.csdn.net/zw6161080123/article/details/80639932

主要是使用了DFS来找到所有满足的路径,用动态规划找到最长路径,代码如下:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <map>
using namespace std;

int a[12][12];//用于存放原始数据
int dp[12][12];//动态规划
int ans;//用于存放路径条数

//DFS算法定义
void dfs(int x, int y, int n)
{
        //这是递归边界
	if (x == n && y == n) 
	{
		++ans;
		return;
	}

	if (x + 1 <= n && dp[x + 1][y] == dp[x][y] - a[x][y]) dfs(x + 1, y, n);//向右
	if (y + 1 <= n && dp[x][y + 1] == dp[x][y] - a[x][y]) dfs(x, y + 1, n);//向上
}



int main()
{
	ans = 0;
	int n;

	//键入数据
	cin >> n;
	for (int i = 1; i <= n; i++) 
	{
		for (int j = 1; j <= n; j++) 
		{
			cin >> a[i][j];
		}
	}

	//翻转矩阵为正
	for (int i = 1; i <= n; i++) 
	{
		for (int j = i + 1; j <= n; j++) 
		{
			swap(a[i][j], a[j][i]);
		}
	}
	for (int i = 1; i <= n / 2; i++) 
	{
		for (int j = 1; j <= n; j++) 
		{
			swap(a[i][j], a[n - i + 1][j]);
		}
	}
	dp[n][n] = a[n][n];

	//动态优化用来找出一共最长路径的值
	for (int i = n; i >= 1; i--) 
	{
		for (int j = n; j >= 1; j--) 
		{
			//切记递推公式
			dp[i][j - 1] = max(dp[i][j - 1], dp[i][j] + a[i][j - 1]);
			dp[i - 1][j] = max(dp[i - 1][j], dp[i][j] + a[i - 1][j]);
		}
	}

	//DFS用来找到最长路径的条数
	dfs(1, 1, n);

	cout << ans << " " << dp[1][1] << endl;
	system("pause");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TIM33470348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值