2020年4月蓝桥杯模拟赛编程题非官方题解

本文解析了从水题到复杂算法题的十道编程竞赛题目,包括反倍数计数、凯撒密码、螺旋矩阵、摆动序列、最小生成树、以及复杂的植树问题等,涵盖了从简单到复杂的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第五题(水题)

给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。
  请问在 1 至 n 中有多少个反倍数。

输入格式

  输入的第一行包含一个整数 n。
  第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。

输出格式

  输出一行包含一个整数,表示答案。

样例输入

30
2 3 6

样例输出

10

样例说明

  以下这些数满足要求:1, 5, 7, 11, 13, 17, 19, 23, 25, 29。

评测用例规模与约定

  对于 40% 的评测用例,1 <= n <= 10000。
  对于 80% 的评测用例,1 <= n <= 100000。
  对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。

#include<iostream>
using namespace std;

int main(void)
{
	long long int n, a, b, c;
	long long int cnt = 0;
	cin >> n >> a >> b >> c;
	for (int i = 0; i < n; i++)
		if (i%a != 0 && i%b != 0 && i%c != 0)cnt++;
	cout << cnt << endl;
	return 0;
}

第六题(水题)

问题描述

  给定一个单词,请使用凯撒密码将这个单词加密。
  凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,...,w变为z,x变为a,y变为b,z变为c。
  例如,lanqiao会变成odqtldr。

输入格式

  输入一行,包含一个单词,单词中只包含小写英文字母。

输出格式

  输出一行,表示加密后的密文。

样例输入

lanqiao

样例输出

odqtldr

评测用例规模与约定

  对于所有评测用例,单词中的字母个数不超过100。

#include<iostream>
#include<cstring>
#include<string>
using namespace std;

int main(void)
{
	string a;
	cin >> a;
	for (int i = 0; i < a.size(); i++)
		a[i] += 3;
	cout << a << endl;
	return 0;
}

第七题(水题,模拟)

问题描述

  对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
  例如,一个 4 行 5 列的螺旋矩阵如下:
  1 2 3 4 5
  14 15 16 17 6
  13 20 19 18 7
  12 11 10 9 8

输入格式

  输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
  第二行包含两个整数 r, c,表示要求的行号和列号。

输出格式

  输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。

样例输入

4 5
2 2

样例输出

15

评测用例规模与约定

  对于 30% 的评测用例,2 <= n, m <= 20。
  对于 70% 的评测用例,2 <= n, m <= 100。
  对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。

#include<iostream>
#include<cstring>
#include<string>
using namespace std;
int G[100][100];
bool vis[100][100] = { false };
int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };
int n, m;
void dfs(int x, int y,int cnt, int direction)
{
	G[x][y] = cnt;
	if (cnt == n * m)
	{
		return;
	}
	int X = dx[direction] + x;
	int Y = dy[direction] + y;
	while (X < 0 || X >= n || Y < 0 || Y >= m || vis[X][Y] == true)
	{
		if (direction == 3)direction = 0;
		else direction++;
		X = dx[direction] + x;
		Y = dy[direction] + y;
	}
	if(X >= 0 && X < n && Y >= 0 && Y < m && vis[X][Y] == false)
	{
		vis[X][Y] = true;
		dfs(X, Y, cnt + 1, direction);
	}
}

int main(void)
{
	int an, am;
	cin >> n >> m;
	vis[0][0] = true;
	dfs(0, 0, 1, 0);
	cin >> an >> am;
	cout << G[an - 1][am - 1] << endl;
	return 0;
}

第八题(动态规划)

问题描述

  如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
  小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。

输入格式

  输入一行包含两个整数 m,n。

输出格式

  输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。

样例输入

3 4

样例输出

14

样例说明

  以下是符合要求的摆动序列:
  2 1 2
  2 1 3
  2 1 4
  3 1 2
  3 1 3
  3 1 4
  3 2 3
  3 2 4
  4 1 2
  4 1 3
  4 1 4
  4 2 3
  4 2 4
  4 3 4

评测用例规模与约定

  对于 20% 的评测用例,1 <= n, m <= 5;
  对于 50% 的评测用例,1 <= n, m <= 10;
  对于 80% 的评测用例,1 <= n, m <= 100;
  对于所有评测用例,1 <= n, m <= 1000。

#include <iostream>
using namespace std;
int dp[1004][1004];
int main() 
{
	int m, n;
	cin >> m >> n;

	for (int i = 1; i <= n; i++)
		dp[1][i] = n - i + 1;

	for (int i = 2; i <= m; i++)
		if (i & 1)
			for (int j = n; j >= 1; j--)
				dp[i][j] = (dp[i - 1][j - 1] + dp[i][j + 1]) % 10000;
		else
			for (int j = 1; j <= n; j++)
				dp[i][j] = (dp[i - 1][j + 1] + dp[i][j - 1]) % 10000;
	int ans = m & 1 ? dp[m][1] : dp[m][n];
	cout << ans << endl;
	system("pause");
	return 0;
}

第九题(最小生成树Prim算法)这题不会,参考别人的

地址:找不到了,找到了就补上。

问题描述

  2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
  这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
  现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
  小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
  sqrt((x_1-x_2)*(x_1-x_2)+(y_1-y_2)*(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
  在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
  由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。

输入格式

  输入的第一行包含一个整数 n ,表示村庄的数量。
  接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。

输出格式

  输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。

样例输入

4
1 1 3
9 9 7
8 8 6
4 5 4

样例输出

17.41

评测用例规模与约定

  对于 30% 的评测用例,1 <= n <= 10;
  对于 60% 的评测用例,1 <= n <= 100;
  对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。

#include <iostream>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;

const int maxn = 1004;
const double MAX = 1e9;

int n;
double a[maxn][maxn], d[maxn], ans;
bool v[maxn];

typedef struct
{
	int x;
	int y;
	int h;
} point;

point p[maxn];

void init()
{
	for (int i = 0; i <= n; i++)
	{
		for (int j = 0; j <= n; j++)
			a[i][j] = MAX;
		d[i] = MAX;
	}
}

void Prim()
{
	memset(v, 0, sizeof(v));
	d[1] = 0;
	for (int i = 1; i < n; i++)
	{
		int x = 0;
		for (int j = 1; j <= n; j++)
			if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
		v[x] = 1;
		for (int y = 1; y <= n; y++)
			if (!v[y]) d[y] = min(d[y], a[x][y]);
	}
}


int main(void)
{
	cin >> n;
	init();
	for (int i = 1; i <= n; i++)
		scanf("%d %d %d", &p[i].x, &p[i].y, &p[i].h);
	for (int i = 1; i <= n - 1; i++)
		for (int j = i + 1; j <= n; j++)
		{
			double temp = sqrt((p[i].x - p[j].x) * (p[i].x - p[j].x) + (p[i].y - p[j].y) * (p[i].y - p[j].y)) + (p[i].h - p[j].h) * (p[i].h - p[j].h);
			a[i][j] = a[j][i] = min(a[i][j], temp);
		}
	Prim();
	for (int i = 2; i <= n; i++) ans += d[i];
	printf("%.2f", ans);
	system("pause");
	return 0;
}

第十题(DFS,不会参考别人的)

地址:https://blog.csdn.net/HelloACM_ICPC/article/details/105540944

问题描述

  小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
  小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
  然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
  他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
  小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。

输入格式

  输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
  接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。

输出格式

  输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。

样例输入

6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2

样例输出

12

评测用例规模与约定

  对于 30% 的评测用例,1 <= n <= 10;
  对于 60% 的评测用例,1 <= n <= 20;
  对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const int MAXN = 1000 + 10;
int n;
int x[MAXN], y[MAXN], r[MAXN];
double pi = acos(-1);
bool vis[MAXN];
int ans = 0;

bool cal(int i)
{
	for (int j = 0; j < n; j++)
	{
		if (i != j && vis[j])
		{
			int dis = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
			if (dis < (r[i] + r[j]) * (r[i] + r[j])) return false;
		}
	}
	return true;
}

void dfs(int step, int sum)
{
	if (step == n)
	{
		ans = max(ans, sum);
		return;
	}
	for (int i = 0; i < n; i++)
	{
		if (!vis[i])
		{
			int tmp = r[i];
			if (!cal(i)) r[i] = 0;
			vis[i] = true;
			dfs(step + 1, sum + r[i] * r[i]);
			vis[i] = false;
			r[i] = tmp;
		}
	}
}

int main()
{
	scanf("%d", &n);
	for (int i = 0; i < n; i++)
		scanf("%d%d%d", &x[i], &y[i], &r[i]);
	dfs(0, 0);
	printf("%d", ans);
	system("pause");
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TIM33470348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值