第五题(水题)
给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。
请问在 1 至 n 中有多少个反倍数。
输入格式
输入的第一行包含一个整数 n。
第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。
输出格式
输出一行包含一个整数,表示答案。
样例输入
30
2 3 6
样例输出
10
样例说明
以下这些数满足要求:1, 5, 7, 11, 13, 17, 19, 23, 25, 29。
评测用例规模与约定
对于 40% 的评测用例,1 <= n <= 10000。
对于 80% 的评测用例,1 <= n <= 100000。
对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。
#include<iostream>
using namespace std;
int main(void)
{
long long int n, a, b, c;
long long int cnt = 0;
cin >> n >> a >> b >> c;
for (int i = 0; i < n; i++)
if (i%a != 0 && i%b != 0 && i%c != 0)cnt++;
cout << cnt << endl;
return 0;
}
第六题(水题)
问题描述
给定一个单词,请使用凯撒密码将这个单词加密。
凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,...,w变为z,x变为a,y变为b,z变为c。
例如,lanqiao会变成odqtldr。
输入格式
输入一行,包含一个单词,单词中只包含小写英文字母。
输出格式
输出一行,表示加密后的密文。
样例输入
lanqiao
样例输出
odqtldr
评测用例规模与约定
对于所有评测用例,单词中的字母个数不超过100。
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
int main(void)
{
string a;
cin >> a;
for (int i = 0; i < a.size(); i++)
a[i] += 3;
cout << a << endl;
return 0;
}
第七题(水题,模拟)
问题描述
对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
例如,一个 4 行 5 列的螺旋矩阵如下:
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
输入格式
输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
第二行包含两个整数 r, c,表示要求的行号和列号。
输出格式
输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
样例输入
4 5
2 2
样例输出
15
评测用例规模与约定
对于 30% 的评测用例,2 <= n, m <= 20。
对于 70% 的评测用例,2 <= n, m <= 100。
对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
int G[100][100];
bool vis[100][100] = { false };
int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };
int n, m;
void dfs(int x, int y,int cnt, int direction)
{
G[x][y] = cnt;
if (cnt == n * m)
{
return;
}
int X = dx[direction] + x;
int Y = dy[direction] + y;
while (X < 0 || X >= n || Y < 0 || Y >= m || vis[X][Y] == true)
{
if (direction == 3)direction = 0;
else direction++;
X = dx[direction] + x;
Y = dy[direction] + y;
}
if(X >= 0 && X < n && Y >= 0 && Y < m && vis[X][Y] == false)
{
vis[X][Y] = true;
dfs(X, Y, cnt + 1, direction);
}
}
int main(void)
{
int an, am;
cin >> n >> m;
vis[0][0] = true;
dfs(0, 0, 1, 0);
cin >> an >> am;
cout << G[an - 1][am - 1] << endl;
return 0;
}
第八题(动态规划)
问题描述
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
输入格式
输入一行包含两个整数 m,n。
输出格式
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
样例输入
3 4
样例输出
14
样例说明
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
评测用例规模与约定
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。
#include <iostream>
using namespace std;
int dp[1004][1004];
int main()
{
int m, n;
cin >> m >> n;
for (int i = 1; i <= n; i++)
dp[1][i] = n - i + 1;
for (int i = 2; i <= m; i++)
if (i & 1)
for (int j = n; j >= 1; j--)
dp[i][j] = (dp[i - 1][j - 1] + dp[i][j + 1]) % 10000;
else
for (int j = 1; j <= n; j++)
dp[i][j] = (dp[i - 1][j + 1] + dp[i][j - 1]) % 10000;
int ans = m & 1 ? dp[m][1] : dp[m][n];
cout << ans << endl;
system("pause");
return 0;
}
第九题(最小生成树Prim算法)这题不会,参考别人的
地址:找不到了,找到了就补上。
问题描述
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
sqrt((x_1-x_2)*(x_1-x_2)+(y_1-y_2)*(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
输入格式
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
输出格式
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
样例输入
4
1 1 3
9 9 7
8 8 6
4 5 4
样例输出
17.41
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。
#include <iostream>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int maxn = 1004;
const double MAX = 1e9;
int n;
double a[maxn][maxn], d[maxn], ans;
bool v[maxn];
typedef struct
{
int x;
int y;
int h;
} point;
point p[maxn];
void init()
{
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= n; j++)
a[i][j] = MAX;
d[i] = MAX;
}
}
void Prim()
{
memset(v, 0, sizeof(v));
d[1] = 0;
for (int i = 1; i < n; i++)
{
int x = 0;
for (int j = 1; j <= n; j++)
if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
v[x] = 1;
for (int y = 1; y <= n; y++)
if (!v[y]) d[y] = min(d[y], a[x][y]);
}
}
int main(void)
{
cin >> n;
init();
for (int i = 1; i <= n; i++)
scanf("%d %d %d", &p[i].x, &p[i].y, &p[i].h);
for (int i = 1; i <= n - 1; i++)
for (int j = i + 1; j <= n; j++)
{
double temp = sqrt((p[i].x - p[j].x) * (p[i].x - p[j].x) + (p[i].y - p[j].y) * (p[i].y - p[j].y)) + (p[i].h - p[j].h) * (p[i].h - p[j].h);
a[i][j] = a[j][i] = min(a[i][j], temp);
}
Prim();
for (int i = 2; i <= n; i++) ans += d[i];
printf("%.2f", ans);
system("pause");
return 0;
}
第十题(DFS,不会参考别人的)
问题描述
小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
输入格式
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
输出格式
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
样例输入
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
样例输出
12
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN = 1000 + 10;
int n;
int x[MAXN], y[MAXN], r[MAXN];
double pi = acos(-1);
bool vis[MAXN];
int ans = 0;
bool cal(int i)
{
for (int j = 0; j < n; j++)
{
if (i != j && vis[j])
{
int dis = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
if (dis < (r[i] + r[j]) * (r[i] + r[j])) return false;
}
}
return true;
}
void dfs(int step, int sum)
{
if (step == n)
{
ans = max(ans, sum);
return;
}
for (int i = 0; i < n; i++)
{
if (!vis[i])
{
int tmp = r[i];
if (!cal(i)) r[i] = 0;
vis[i] = true;
dfs(step + 1, sum + r[i] * r[i]);
vis[i] = false;
r[i] = tmp;
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%d%d%d", &x[i], &y[i], &r[i]);
dfs(0, 0);
printf("%d", ans);
system("pause");
return 0;
}