Python奇异值分解

文章介绍了奇异值分解的基本原理,包括特征值和奇异值的关系,以及非方阵的SVD表示。在numpy和scipy库中,都提供了SVD的实现。通过对比测试,展示了两者在计算效率上的差异,numpy.linalg.svd比scipy.linalg.svd慢,而后者可以通过设置lapack_driver参数优化性能。

基本原理

A A A是方阵时,可以很容易地进行特征分解: A = W Σ W − 1 A=W\Sigma W^{-1} A=WΣW1,其中 Σ \Sigma Σ A A A的特征值组成的对角矩阵。如果 W W W由标准正交基组成,则 W − 1 = W T W^{-1}=W^T W1=WT,特征分解可进一步写成 W T Σ W W^T\Sigma W WTΣW

然而,当 A A A不是方阵时,情况大不一样了,但仍然可以将 A A A表示成 A = U Σ V T A=U\Sigma V^T A=UΣVT的形式,其中 Σ \Sigma Σ也是对角矩阵,对角线上的每个元素被称作奇异值。

奇异值的求解过程和特征值息息相关,因为把 A A A变成方阵很简单,只要乘以转置就行。故令 L = A A T L=AA^T L=AAT R = A T A R=A^TA R=ATA,则 L , R L, R L,R都可以求特征值 λ i \lambda_i λi和特征向量,其中 L L L的特征向量为 A A A的左奇异向量, R R R的特征向量为右奇异向量。对应的奇异值 σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi

numpy的实现

numpy.linalg中提供了奇异值分解函数svd,参数为

svd(a, full_matrices=True, compute_uv=True, hermitian=False)

其中

  • a 待分解矩阵,维度为**(M, N)**
  • full_matrices 若为True,则U, Vh分别为**(M, M)(N, N);否则分别为(M, K), (K, N)**,K为M, N中较小的那个
  • compute_uv 如果为False则不计算U, Vh
  • hermitianTrue时,表示处理的是实对称矩阵

scipy实现

scipy.linalg中也提供了奇异值分解函数svd,其参数为

svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, lapack_driver='gesdd')

其中与numpy.linalg相同的参数,其意义也相同,不相同的部分,各参数含义如下

  • overwrite_a 如果为True,则直接对a进行修改
  • check_finite 如果为True,则进行有限性检查
  • lapack_driver SVD分解的方法,有两个选择
    • ‘gesdd’ 效率更高
    • ‘gesvd’ 此为Matlab和R中使用的方法

其返回值即 U , Σ , V T U, \Sigma, V^T U,Σ,VT

scipy.linalg还提供了两个和SVD相关的函数,svdvals(a)用于求a的奇异值;diagsvd(s, M, N)通过s, M, N,创建一个 Σ \Sigma Σ矩阵。

对比测试

下面测试一下svd

import numpy as np
import scipy.linalg as sl
a = np.random.rand(5,5)
u1, s1, vh1 = sl.svd(a)
u2, s2, vh2 = np.linalg.svd(a)
print(s1)
# [2.63698545 0.94063722 0.36159198 0.21052102 0.19014115]
print(s1-s2)
# [ 0.0  0.0  1.11022302e-16 -2.77555756e-17 0.0]

numpyscipy的结果是几乎相同的,下面测试一下不同方法进行奇异值分解的时间

from timeit import timeit
a = np.random.rand(1000,1000)
timeit(lambda:sl.svd(a), number=10)
# 1.870287900000001
timeit(lambda:np.linalg.svd(a), number=10)
# 13.355788999999998
timeit(lambda:sl.svd(a, lapack_driver='gesvd'), number=10)
# 3.873418600000001
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值