Maltab-机器学习-Engineering features

本文详细介绍了一系列统计函数,包括中心趋势度量(算术平均数、中位数、众数、截尾平均数、几何平均数、调和平均数)、离散度度量(范围、标准差、方差、平均绝对偏差、四分位距)、形状度量(偏斜度、峰度、任意阶中心矩)。此外,还介绍了如何使用这些函数进行基本统计计算,以及在信号处理中寻找峰值和计算导数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Statistical Functions

Measures of Central Tendency

FunctionDescription
meanArithmetic mean
medianMedian (middle) value
modeMost frequent value
trimmeanTrimmed mean (mean, excluding outliers)
geomeanGeometric mean
harmeanHarmonic mean

Measures of Spread

FunctionDescription
rangeRange of values (largest – smallest)
stdStandard deviation
varVariance
madMean absolute deviation
iqrInterquartile range (75th percentile minus 25th percentile)

Measures of Shape

FunctionDescription
skewnessSkewness (third central moment)
kurtosisKurtosis (fourth central moment)
momentCentral moment of arbitrary order

Calculate Basic Statistics

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads and plots the data.

load sampleletters.mat

plot(b1.Time,b1.X)

hold on

plot(b2.Time,b2.X)

hold off

plot(b1.Time,b1.Y)

hold on

plot(b2.Time,b2.Y)

hold off

Task 1

aratiob = range(b1.Y)/range(b1.X)

Task 2

medxb = median(b1.X,"omitnan")

medyb = median(b1.Y,"omitnan")

Task 3

devxb = mad(b1.X)

devyb = mad(b1.Y)

Task 4

aratiov = range(v1.Y)/range(v1.X)

medxd = median(d1.X,"omitnan")

medyd = median(d1.Y,"omitnan")

devxm = mad(m1.X)

devym = mad(m1.Y)

Further Practice

plot(b1.X,b1.Y,b2.X,b2.Y)

axis([-1 1 -1 1])

axis equal

plot(d1.X,d1.Y,d2.X,d2.Y)

axis([-1 1 -1 1])

axis equal

Find Peaks in Signals

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads and plots the data.

load sampleletters.mat

plot(m1.Time,m1.X)

Task 1

idxmin = islocalmin(m1.X)

idxmax = islocalmax(m1.X)

Visualize the results

plot(m1.Time,m1.X)

hold on

plot(m1.Time(idxmin),m1.X(idxmin),"o")

plot(m1.Time(idxmax),m1.X(idxmax),"s")

hold off

Task 2

[idx,prom] = islocalmin(m1.X);

plot(m1.Time,prom)

Task 3

idxmin = islocalmin(m1.X,"MinProminence",0.1)

idxmax = islocalmax(m1.X,"MinProminence",0.1)

Further Practice

nnz(idxmin)

sum(idxmin)

Calculating Derivatives

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads and plots the data.

load sampleletters.mat

plot(m2.Time,m2.X)

grid

Task 1

dX = diff(m2.X);

dT = diff(m2.Time);

Task 2

dXdT = dX./dT;

Task 3

plot(m2.Time(1:end-1),dXdT)

Task 4

maxdx = max(dXdT)

dYdT = diff(m2.Y)./dT;

maxdy = max(dYdT)

Task 5

dYdT = standardizeMissing(dYdT,Inf);

maxdy = max(dYdT)

Further Practice

dYdT = standardizeMissing(dYdT,[-Inf 0 Inf]);

maxdy = max(dYdT)

Calculating Correlations

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads and plots the data.

load sampleletters.mat

plot(v2.X,v2.Y,"o-")

Task 1

C = corr(v2.X,v2.Y)

Task 2

C = corr(v2.X,v2.Y,"Rows","complete")

Task 3

M = [v2.X(1:11) v2.Y(1:11) v2.X(12:22) v2.Y(12:22)]

Task 4

Cmat = corr(M,"Rows","complete")

Create a Feature Extraction Function

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads the data and calculates some features for one letter.

load sampleletters.mat

letter = b1;

aratio = range(letter.Y)/range(letter.X)

idxmin = islocalmin(letter.X,"MinProminence",0.1);

numXmin = nnz(idxmin)

idxmax = islocalmax(letter.Y,"MinProminence",0.1);

numYmax = nnz(idxmax)

dT = diff(letter.Time);

dXdT = diff(letter.X)./dT;

dYdT = diff(letter.Y)./dT;

avgdX = mean(dXdT,"omitnan")

avgdY = mean(dYdT,"omitnan")

corrXY = corr(letter.X,letter.Y,"rows","complete")

featurenames = ["AspectRatio","NumMinX","NumMinY","AvgU","AvgV","CorrXY"];

Task 1

feat = table(aratio,numXmin,numYmax,avgdX,avgdY,corrXY)

Task 2

feat = table(aratio,numXmin,numYmax,avgdX,avgdY,corrXY,'VariableNames',featurenames)

Task 3 (continued below)

featB2 = extract(b2)

Task 3

function feat=extract(letter)

aratio = range(letter.Y)/range(letter.X)

idxmin = islocalmin(letter.X,"MinProminence",0.1);

numXmin = nnz(idxmin)

idxmax = islocalmax(letter.Y,"MinProminence",0.1);

numYmax = nnz(idxmax)

dT = diff(letter.Time);

dXdT = diff(letter.X)./dT;

dYdT = diff(letter.Y)./dT;

avgdX = mean(dXdT,"omitnan")

avgdY = mean(dYdT,"omitnan")

corrXY = corr(letter.X,letter.Y,"rows","complete")

featurenames = ["AspectRatio","NumMinX","NumMinY","AvgU","AvgV","CorrXY"];

feat = table(aratio,numXmin,numYmax,avgdX,avgdY,corrXY,'VariableNames',featurenames)

end

Add a Feature Extraction Function

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code creates a datastore and adds a preprocessing function as a transformation to it.

letterds = datastore("*.txt");

preprocds = transform(letterds,@scale)

Task 1

featds = transform(preprocds,@extract)

Task 2

data = readall(featds)

scatter(data.AspectRatio,data.CorrXY)

Task 3

knownchar = extractBetween(letterds.Files,"_","_")

Task 4

knownchar = categorical(knownchar)

Task 5

data.Character = knownchar

gscatter(data.AspectRatio,data.CorrXY,data.Character)

Local Functions

function data = scale(data)

% Normalize time [0 1]

data.Time = (data.Time - data.Time(1))/(data.Time(end) - data.Time(1));

% Fix aspect ratio

data.X = 1.5*data.X;

% Center X & Y at (0,0)

data.X = data.X - mean(data.X,"omitnan");

data.Y = data.Y - mean(data.Y,"omitnan");

% Scale to have bounding box area = 1

scl = 1/sqrt(range(data.X)*range(data.Y));

data.X = scl*data.X;

data.Y = scl*data.Y;

end

function feat = extract(letter)

% Aspect ratio

aratio = range(letter.Y)/range(letter.X);

% Local max/mins

idxmin = islocalmin(letter.X,"MinProminence",0.1);

numXmin = nnz(idxmin);

idxmax = islocalmax(letter.Y,"MinProminence",0.1);

numYmax = nnz(idxmax);

% Velocity

dT = diff(letter.Time);

dXdT = diff(letter.X)./dT;

dYdT = diff(letter.Y)./dT;

avgdX = mean(dXdT,"omitnan");

avgdY = mean(dYdT,"omitnan");

% Correlation

corrXY = corr(letter.X,letter.Y,"rows","complete");

% Put it all together into a table

featurenames = ["AspectRatio","NumMinX","NumMinY","AvgU","AvgV","CorrXY"];

feat = table(aratio,numXmin,numYmax,avgdX,avgdY,corrXY,'VariableNames',featurenames);

end

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南叔先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值