1087: [SCOI2005]互不侵犯King(状压dp)

本文探讨在一个N×N的棋盘中放置K个国王,使其互不攻击的摆放方案总数。通过状压DP算法,详细介绍了如何利用状态压缩进行有效转移,以求解复杂组合问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input
  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output
  方案数。

Sample Input
3 2
Sample Output
16
HINT
Source

思路: 状压dp, dp(i,j,s)代表到了第i行,已经有k个king,第i行状态是s。转移就可以了

#include <cstdio>
#include <algorithm>

using namespace std;

typedef long long ll;
ll dp[10][1005][1005],num[1005],sta[1005];
int flag[1005];
int main()
{
    int n,k;scanf("%d%d",&n,&k);
    int cnt = 0;
    for(int i = 0;i < (1 << n);i++)
    {
        if(!(i & (i << 1)))
        {
            
            int tmp = i;
            while(tmp)
            {
                num[i] += (tmp & 1);
                tmp >>= 1;
            }
            sta[++cnt] = i;
            dp[1][num[i]][i] = 1;
        }
    }
    
    for(int i = 2;i <= n;i++)
    {
        for(int j = 0;j <= k;j++)
        {
            for(int now = 1;now <= cnt;now++)
            {
                if(num[sta[now]] > j)
                    continue;
                for(int last = 1;last <= cnt;last++)
                {
                    if((sta[now] & sta[last]) || (sta[now] & (sta[last] >> 1)) || ((sta[now]) & sta[last] << 1))
                        continue;
                    dp[i][j][sta[now]] += dp[i - 1][j - num[sta[now]]][sta[last]];
                    
                }
            }
        }
    }
    
    ll ans = 0;
    
    for(int i = 1;i <= cnt;i++)
    {
        ans += dp[n][k][sta[i]];
    }
    printf("%lld\n",ans);
    return 0;
}

AC NEW

#include <cstdio>
#include <cstring>

using namespace std;

typedef long long ll;
ll dp[11][1 << 10][1 << 10];
ll sta[1 << 10],num[1 << 10];

int main()
{
    ll n,m;scanf("%lld%lld",&n,&m);
    ll cnt = 0;
    for(ll i = 0;i < (1 << n);i++)
    {
        if(!(i & (i << 1)))
        {
            ll tmp = i;
            while(tmp)
            {
                num[i] ++;
                tmp = tmp & (tmp - 1);
            }
            sta[++cnt] = i;
            dp[1][num[i]][i] = 1;
        }
    }
    
    for(ll i = 2;i <= n;i++)
    {
        for(ll j = 0;j <= m;j++)
        {
            for(ll now = 1;now <= cnt;now++)
            {
                if(num[sta[now]] <= j)
                {
                    for(ll last = 1;last <= cnt;last++)
                    {
                        if((sta[now] & sta[last]) == 0 && ((sta[now] << 1 & sta[last]) == 0) && ((sta[now] >> 1 & sta[last]) == 0))
                        {
                            dp[i][j][sta[now]] += dp[i - 1][j - num[sta[now]]][sta[last]];
                        }
                    }
                }
            }
        }
    }
    
    ll ans = 0;
    for(ll i = 1;i <= cnt;i++)
    {
        ans += dp[n][m][sta[i]];
    }
    printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值