ACWING282. 石子合并(区间dp)

本文介绍了一种算法,用于解决石子合并问题,即如何以最小代价将排成一排的N堆石子合并成一堆。通过动态规划方法,文章详细解释了如何计算并输出最小代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设有N堆石子排成一排,其编号为1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;

如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式
第一行一个数N表示石子的堆数N。

第二行N个数,表示每堆石子的质量(均不超过1000)。

输出格式
输出一个整数,表示最小代价。

数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22

思路: dp(i,j)代表i到j的最小石子合并花费,子状态就是枚举每一段,把这一段切开来算就是子状态。边界注意初始化。

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int a[305],sum[305];
int dp[305][305];

int main()
{
    int n;scanf("%d",&n);
    memset(dp,0x3f3f3f3f,sizeof(dp));
    for(int i = 1;i <= n;i++)
    {
        scanf("%d",&a[i]);
        sum[i] = sum[i - 1] + a[i];
        dp[i][i] = 0;
    }
    
    for(int l = 1;l <= n;l++)
    {
        for(int i = 1;i + l <= n;i++)
        {
            int j = i + l;
            for(int k = i;k < j;k++)
            {
                dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);
            }
        }
    }
    printf("%d\n",dp[1][n]);
    return 0;
}

<think>好的,我现在需要帮助用户解答关于AcWing平台上石子合并问题的动态规划解法和代码实现。首先,我得回忆一下这个问题的大致内容。石子合并通常是一个区间DP问题,用户提到的引用部分也提到了将第i堆到第j堆石子分成不同的情况,这验证了这一点。 用户可能已经了解动态规划的基本概念,但需要具体的解题思路和代码。首先,我需要明确问题的具体描述。石子合并问题应该是将N堆石子排成一排,每次合并相邻的两堆,代价为两堆石子的数量之和,求合并成一堆的最小总代价。或者可能是一个环形的问题,但根据引用中的描述,这里可能是线性的排列,因为提到了从i到j堆的不同划分方式。 接下来,动态规划的状态定义通常是dp[i][j]表示合并第i到第j堆石子的最小代价。状态转移方面,需要枚举分割点k,将区间[i,j]分成[i,k]和[k+1,j],然后计算合并这两个区间的最小代价加上合并后的总重量。不过根据引用中的描述,这里的划分可能有所不同,比如分成左边一部分和右边所有,或者更复杂的划分方式,可能需要确认正确的转移方程。 另外,预处理前缀和数组是必要的,这样可以快速计算任意区间石子总和,减少时间复杂度。石子合并区间DP通常需要三重循环:区间长度、起始点、分割点。时间复杂度为O(n^3),这在n较小时可行,但n大时可能需要优化,比如四边形不等式优化,但用户可能暂时不需要这个,先给出基础解法。 现在需要确保状态转移方程的正确性。根据常规区间DP,状态转移方程应为dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum(i,j)),其中k在i到j-1之间。但根据用户提供的引用内容,提到分为k种情况,可能k在这里是分割点的数量,或者不同的分割方式,所以可能需要确认分割点的范围。 然后,代码实现部分需要初始化dp数组,处理长度为1的区间代价为0,然后逐步增加区间长度,计算每个区间dp值。前缀和数组的构建也是关键,sum[i][j]表示第i到j堆石子的总和,可以通过前缀和数组快速计算。 用户可能需要具体的步骤解释,比如如何填充dp表,如何遍历区间长度,以及如何枚举分割点。此外,代码示例需要用Python实现,并确保正确性。例如,初始化dp为一个二维数组,填充时从长度2开始,直到n,每次计算所有可能的i和j,然后枚举k的位置。 最后,需要生成相关问题,这可能包括优化方法、时间复杂度的分析,或者与其他问题的比较。比如,如何将线性问题扩展到环形情况,或者使用四边形不等式优化时间复杂度到O(n^2)等。 现在需要整理思路,确保每个部分都正确,并符合用户提供的引用内容。特别是引用中提到的“分为k种情况”,可能指的是不同的分割方式,这里k是分割点,所以状态转移方程中的k应该遍历所有可能的分割点,找到最小值。因此,正确的状态转移方程应该正确反映这一点,并且代码中的循环结构要正确处理这些分割点。</think>### AcWing 石子合并问题解析 #### 问题描述 将$n$堆石子排成一列,每次合并相邻两堆,合并代价为两堆石子数量之和。最终将所有石子合并成一堆,求最小总代价。例如:有4堆石子$[1,3,5,2]$,合并顺序不同,总代价不同[^1]。 --- #### 动态规划思路 1. **状态定义** 设$dp[i][j]$表示合并第$i$堆到第$j$堆石子的最小代价。 2. **状态转移** 将区间$[i,j]$分为$[i,k]$和$[k+1,j]$两部分,合并总代价为两部分各自的合并代价加上合并这两部分的代价(即区间$[i,j]$的石子总数): $$ dp[i][j] = \min_{k=i}^{j-1} \left( dp[i][k] + dp[k+1][j] + \sum_{t=i}^{j} a_t \right) $$ 3. **前缀和优化** 预处理前缀和数组$s$,使得$\sum_{t=i}^{j} a_t = s[j] - s[i-1]$,避免重复计算。 --- #### 代码实现 ```python n = int(input()) a = list(map(int, input().split())) s = [0] * (n+1) # 初始化前缀和 for i in range(1, n+1): s[i] = s[i-1] + a[i-1] # 初始化dp数组 dp = [[0]*(n+1) for _ in range(n+1)] # 区间DP计算 for length in range(2, n+1): # 枚举区间长度 for i in range(1, n-length+2): # 区间起点i j = i + length - 1 # 区间终点j dp[i][j] = float(&#39;inf&#39;) for k in range(i, j): # 枚举分割点k cost = dp[i][k] + dp[k+1][j] + s[j] - s[i-1] if cost < dp[i][j]: dp[i][j] = cost print(dp[1][n]) ``` --- #### 关键点分析 1. **时间复杂度**:$O(n^3)$,适用于$n \leq 300$的规模。 2. **环形扩展**:若石子排成环形,可将数组扩展为$2n$长度,最后取$dp[i][i+n-1]$的最小值。 3. **四边形不等式优化**:可将复杂度优化至$O(n^2)$,适用于$n \leq 5000$。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值