题意:
一棵树,每次可以将一个路径上所有边异或x。求最少多少次操作使得所有边为0。
思路:
和牛客多校那道题很像,都是将链转换到点。
https://blog.csdn.net/tomjobs/article/details/107922058
考虑链很难搞,想到要转换为考虑点。
可以将一个点的点权设置为所有出边的异或值,这样每次修改一条链,相当于把链两边点点权异或x。
结果等价于把所有点权变成0。
所以可以算出所有点的点权,一开始的时候肯定将点权相同的点搞完。最后剩下的点点权都不同,这个过程可以状压DP写。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <iostream>
#include <map>
#include <string>
#include <set>
typedef long long ll;
using namespace std;
const int maxn = 1e5 + 7;
const int INF = 0x3f3f3f3f;
int f[1 << 17];
int a[maxn];
int DP(int x) {
if(f[x] != INF) return f[x];
for(int i = 1;i <= 15;i++) {
if((x & (1 << i)) == 0) continue;
for(int j = 1;j <= 15;j++) {
if(i == j) continue;
if((x & (1 << j)) == 0) continue;
int num = 0;
if(x & (1 << (i ^ j))) num = 1;
f[x] = min(f[x],DP(x ^ (1 << i) ^ (1 << j) ^ (1 << (i ^ j))) + 1 + num);
}
}
return f[x];
}
int main() {
int n;scanf("%d",&n);
for(int i = 1;i < n;i++) {
int x,y,z;scanf("%d%d%d",&x,&y,&z);
x++;y++;
a[x] ^= z;a[y] ^= z;
}
int sta = 0;
int num = 0;
memset(f,0x3f,sizeof(f));
f[0] = 0;
for(int i = 1;i <= n;i++) {
if(!a[i]) continue;
if(sta & (1 << a[i])) {
num++;
}
sta ^= (1 << a[i]);
}
printf("%d\n",DP(sta) + num);
return 0;
}