【题解】【AcWing】1636. 最低公共祖先

这篇博客介绍了如何在二叉搜索树中找到两个节点的最低公共祖先(LCA)。通过前序遍历和离散化,构建并维护每个节点的父节点和深度信息,然后自顶向下搜索相同的节点来找到LCA。文章提供了具体的算法实现,并展示了处理不同情况的输出示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1636. 最低公共祖先

原题传送:AcWing 1636. 最低公共祖先

树中两个结点 U U U V V V 的最低公共祖先(LCA)是指同时具有 U U U V V V 作为后代的最深结点。

二叉搜索树(BST)递归定义为具有以下属性的二叉树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
  • 若它的右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值
  • 它的左、右子树也分别为二叉搜索树

现在给定BST中的任意两个结点,请你找出它们的最低公共祖先。

输入格式

第一行包含两个整数 M M M N N N ,分别表示询问结点对数以及二叉搜索树中的结点数量。

第二行包含 N N N 个不同整数,表示该二叉搜索树的前序遍历序列。

接下来 M M M 行,每行包含两个整数 U U U V V V ,表示一组询问。

所有结点权值均在int范围内。

输出格式

对于每对给定的 U U U V V V ,输出一行结果。

如果 U U U V V V 的LCA是 A A A ,且 A A A 不是 U U U V V V ,则输出LCA of U and V is A.

如果 U U U V V V 的LCA是 A A A ,且 A A A U U U V V V 中的一个,则输出X is an ancestor of Y.,其中 X X X 表示 A A A Y Y Y 表示另一个结点。

如果 U U U V V V 没有在BST中找到,则输出ERROR: U is not found.ERROR: V is not found.ERROR: U and V are not found.

数据范围

1 ≤ M ≤ 1000 1 \le M \le 1000 1M1000 ,
1 ≤ N ≤ 10000 1 \le N \le 10000 1N10000

输入样例:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
输出样例:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
思路:

前序遍历和中序遍历建树,离散化下标,保存每个点的父结点和对应的深度,从高到低寻找相同结点即为最低公共祖先。

题解:
#include<bits/stdc++.h>

using namespace std;

const int N = 10010;

int m, n;
int pre[N], in[N], seq[N];
int p[N], depth[N];
unordered_map<int, int> pos;

int build(int il, int ir, int pl, int pr, int d)
{
	int root = pre[pl];
	int k = root;
	
	depth[root] = d;
	
	if(il < k)
		p[build(il, k - 1, pl + 1, pl + 1 + (k - 1 - il), d + 1)] = root;
	if(k < ir)
		p[build(k + 1, ir, pl + 1 + (k - 1 - il) + 1, pr, d + 1)] = root;
	return root;
}

int main()
{	
	cin >> m >> n;
	for(int i = 0; i < n; i++)
	{
		cin >> pre[i];
		seq[i] = pre[i];
	}	
	sort(seq, seq + n);
	for(int i = 0; i < n; i++)
	{
		pos[seq[i]] = i;
		in[i] = i;
	}
	
	for (int i = 0; i < n; i ++ )
		pre[i] = pos[pre[i]];

	build(0, n - 1, 0, n - 1, 0);
	
	while(m--)
	{
		int a, b;
		cin >> a >> b;
		
		if(pos.count(a) && pos.count(b))
		{
			a = pos[a], b = pos[b];
			int x = a, y = b;
			while(a != b)
			{
				if(depth[a] < depth[b])
					b = p[b];
				else
					a = p[a];
			}
			
			if(a != x && a != y)
				cout << "LCA of " << seq[x] << " and " << seq[y] << " is " << seq[a] << "." << endl;
			else if(a == x)
				cout << seq[x] << " is an ancestor of " << seq[y] << "." << endl;
			else
				cout << seq[y] << " is an ancestor of " << seq[x] << "." << endl;
		}
		else if(pos.count(a) == 0 && pos.count(b) == 0)
			cout << "ERROR: " << a << " and " << b << " are not found." << endl;
		else if(pos.count(a) == 0)
			cout << "ERROR: " << a << " is not found." << endl;
		else
			cout << "ERROR: " << b << " is not found." << endl;
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值