三次样条插值函数(C++版)

本文介绍了一种基于二次样条插值的数值计算方法,该方法通过输入的数据点坐标来计算插值点的坐标,适用于需要进行平滑插值处理的应用场景。文章详细展示了算法的实现过程,包括系数计算及插值点计算等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. double spl2(double x[],                                                                /*x坐标序列*/
  2.                         double y[],                                                                /*y坐标序列*/
  3.                         int n,                                                                        /*输入数据个数*/
  4.                         double ddy1, double ddyn,                                /*第一点和最末点二阶导数*/
  5.                         double t[],                                                                /*插值点的x坐标序列*/
  6.                         int m,                                                                        /*插值点个数*/
  7.                         double z[]                                                                /*差值点的y坐标序列*/
  8. )        
  9. {
  10.         int i,j;
  11.         double h0,h1,alpha,beta,*s,*dy;
  12.         s= new double[n];
  13.         dy = new double[n];
  14.         dy[0]=-0.5;
  15.         h0=x[1]-x[0];
  16.         s[0]=3.0*(y[1]-y[0])/(2.0*h0)-ddy1*h0/4.0;
  17.         for (j=1;j<=n-2;j++)
  18.         {
  19.                 h1=x[j+1]-x[j];
  20.                 alpha=h0/(h0+h1);
  21.                 beta=(1.0-alpha)*(y[j]-y[j-1])/h0;
  22.                 beta=3.0*(beta+alpha*(y[j+1]-y[j])/h1);
  23.                 dy[j]=-alpha/(2.0+(1.0-alpha)*dy[j-1]);
  24.                 s[j]=(beta-(1.0-alpha)*s[j-1]);
  25.                 s[j]=s[j]/(2.0+(1.0-alpha)*dy[j-1]);
  26.                 h0=h1;
  27.         }
  28.         dy[n-1]=(3.0*(y[n-1]-y[n-2])/h1+ddyn*h1/2.0-s[n-2])/(2.0+dy[n-2]);
  29.         for (j=n-2;j>=0;j--)        dy[j]=dy[j]*dy[j+1]+s[j];
  30.         for (j=0;j<=n-2;j++)        s[j]=x[j+1]-x[j];
  31.         for (j=0;j<=m-1;j++)
  32.         {
  33.                 if (t[j]>=x[n-1]) i=n-2;
  34.                 else
  35.                 {
  36.                         i=0;
  37.                         while (t[j]>x[i+1]) i=i+1;
  38.                 }
  39.                 h1=(x[i+1]-t[j])/s[i];
  40.                 h0=h1*h1;
  41.                 z[j]=(3.0*h0-2.0*h0*h1)*y[i];
  42.                 z[j]=z[j]+s[i]*(h0-h0*h1)*dy[i];
  43.                 h1=(t[j]-x[i])/s[i];
  44.                 h0=h1*h1;
  45.                 z[j]=z[j]+(3.0*h0-2.0*h0*h1)*y[i+1];
  46.                 z[j]=z[j]-s[i]*(h0-h0*h1)*dy[i+1];
  47.         }
  48.         delete[] s;
  49.         delete[] dy;
  50.         return 0.0;
  51. }
#include #include #include using namespace std; class scyt {private: int i,n; double s;//插入点的计算值 double X;//输入的插入点 double z1,z2;//起点和终点的一阶导数值 double *xx,*yy,*a,*b,*c,*f,*h;//b用来存主对角线上的值, //a,c用来存下,上次对角线上的值 double *x,*y,*l,*u;//求解三对角方程所需元素 public: void input();//数据输入 void qiudao();//求二阶导数 void sdj();//解三对角方程 void jscrd();//计算插入点的值 ~scyt()//释放内存 {delete []xx,yy,a,b,c,h,x,y,l,u,f;} }; void main() {scyt myscyt; myscyt.input();//读入x,y数据 myscyt.qiudao();//计算二阶导数 myscyt.jscrd();//计算插入点的值 } void scyt::input()//读入x,y数据 {ifstream fin("ty.dat"); fin>>n; xx=new double[n]; yy=new double[n]; for(i=0;i>xx[i]>>yy[i];} fin>>z1>>z2; fin.close(); } void scyt::qiudao()//求二阶导数 {a=new double[n-1]; b=new double[n]; c=new double[n-1]; f=new double[n]; h=new double[n-1]; for(i=0;i<n-1;i++) {h[i]=xx[i+1]-xx[i];} a[n-2]=1; c[0]=1; for(i=0;i<n-2;i++) {a[i]=h[i]/(h[i]+h[i+1]);} for(i=0;i<n;i++) {b[i]=2;} for(i=1;i<n-1;i++) {c[i]=1-a[i-1];} f[0]=(6/h[0])*((yy[1]-yy[0])-z1); f[n-1]=(6/h[n-2])*(z2-(yy[n-1]-yy[n-2])/h[n-2]); for(i=1;i<n-1;i++) {f[i]=(6/(h[i-1]+h[i]))*((yy[i+1]-yy[i])/h[i]-\ (yy[i]-yy[i-1])/h[i-1]);} sdj(); } void scyt::sdj()//解三对角方程 {x=new double[n]; y=new double[n]; l=new double[n]; u=new double[n-1]; l[0]=b[0]; for(i=0;i<=n-2;i++) {u[i]=c[i]/l[i]; l[i+1]=b[i+1]-a[i]*u[i];}//求下三角中的l[i]和上三角中的u[i] y[0]=f[0]/l[0]; for(i=1;i=0;i--) {x[i]=y[i]-u[i]*x[i+1];} cout<<n<<"个点的导数值分别是:"<<endl; for(i=0;i<n;i++) cout<<"x["<<i<<"]="<<x[i]<<" "; } void scyt::jscrd() {cout<<"\n"<<"请输入插入点的值X,当X=1000时退出程序!"<<endl; while(X!=1000) {cout<>X; if(X!=1000) {for(i=0;i<n-1;i++) {if(xx[i]=X) break; } s=pow((xx[i+1]-X),3)*x[i]/(6*h[i])+pow\ ((X-xx[i]),3)*x[i+1]/(6*h[i])+\ (xx[i+1]-X)*(yy[i]-h[i]*h[i]*x[i]/6)/h[i]\ +(X-xx[i])*(yy[i+1]-h[i]*h[i]*x[i+1]/6)/h[i]; cout<<"s["<<X<<"]="<<s<<endl; } } }
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值