4. 寻找两个正序数组的中位数

这篇博客讨论了一种算法,用于在O(log(m+n))的时间复杂度内找到两个正序数组的中位数。示例展示了如何将两个数组合并并计算中位数,包括当数组长度为奇数和偶数时的情况。该算法适用于数据处理和排序问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 寻找两个正序数组的中位数
    给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        vector<int> merge(m + n);
        int left_1 = 0, left_2 = 0, pos = 0;
        while(left_1 < m && left_2 < n){
            // nums1[left_1] > nums2[left_2] ? merge[pos++] : merge[];
            merge[pos++] = nums1[left_1] < nums2[left_2] ? nums1[left_1++] : nums2[left_2++];
        }
        while(left_1 < m){
            merge[pos++] = nums1[left_1++];
        }
        while(left_2 < n){
            merge[pos++] = nums2[left_2++];
        }
        return (m + n) % 2 == 1 ? merge[(m + n) / 2] : (merge[(m + n) / 2] + merge[(m + n) / 2 - 1]) / 2.0;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值