问题解决:Pycharm一直卡在Uploading PyCharm helpers && Python Interpreter... Python helpers are not copied yet

本文介绍了解决PyCharm远程调试时出现的“Python helpers are not copied yet...”错误的方法。通过登录远程服务器并执行特定命令来更新或替换远程服务器上的.pycharm_helpers文件夹内容,最终成功解决了该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

今天重启了下电脑,突然发现pycharm会一直卡在下面这个地方
在这里插入图片描述
运行py文件会报错,“Python helpers are not copied yet to the remote host. Please wait until remote interpreter”

看到有个博客说把C:\Program Files\JetBrains\PyCharm 2017.2.3中的skeletons文件夹删掉,重新启动再配置远程环境就好了。

这个我试了下,失败了

解决方法

搜了一段时间后,终于在这里找到了解决方法

具体地,登陆到远程服务器,然后执行下面的操作

cd /home/root/
cd ./.pycharm_helpers/
rm -rf check_all_test_suite.py
tar -xvzf helpers.tar.gz

最后重启pycharm后就可以了

参考资料

<think>好的,用户的问题是:在使用PyCharm训练模型时,电脑突然关机导致的问题,需要进行数据恢复和故障排查。我需要根据用户提供的三个引用内容,结合自己的知识,给出解决方案。 首先,用户提到的引用[2]提到hard reboot可能导致数据丢失,因为执行的是destroy操作,而不是正常的shutdown。这说明突然关机会中断正在运行的进程,可能导致模型训练数据未保存。引用[3]中提到了文件上传中断的解决方法,比如检查网络、拆分文件、查看平台公告,这些思路可以类比到数据恢复和故障排查中,比如检查自动保存、拆分训练步骤等。 接下来,我需要分步骤考虑数据恢复的可能方法。首先,检查PyCharm或训练框架是否有自动保存的机制,比如检查点文件(checkpoints)。很多深度学习框架如TensorFlow或PyTorch会在训练过程中定期保存模型状态,这可能帮助恢复训练进度。然后,查看临时文件夹是否有缓存文件,系统或软件可能在临时目录中存储未保存的数据。此外,用户可能手动设置了备份路径,需要检查是否有备份文件存在。 然后是故障排查,需要防止类似问题再次发生。引用[3]中提到的网络问题处理方式,比如暂停后重新启动,可以类比到训练过程中定期保存和备份。建议用户配置自动保存功能,调整保存频率,比如每个epoch结束后保存。另外,确保硬件稳定性,比如使用UPS电源防止断电,监控系统温度避免过热关机。引用[2]中提到的soft reboot和hard reboot的区别,建议用户正常关闭程序,避免直接断电,以减少数据丢失风险。 还要考虑日志分析,查看PyCharm或训练框架的日志文件,确定关机时的错误信息,帮助定位问题原因。同时,检查系统日志,比如在Linux中使用journalctl,Windows查看事件查看器,找出关机原因,是否是硬件故障或系统错误。 最后,预防措施方面,建议用户使用版本控制定期提交代码和数据,利用云存储或异地备份重要数据。分阶段训练,将长时间任务分解为多个短任务,每阶段结束后保存结果,减少单次训练的数据丢失风险。 需要确保回答结构清晰,分点列出,引用相关的引用内容。比如在提到数据恢复时,引用[2]说明突然关机的风险,引用[3]中的方法类比到检查自动保存和备份。同时,生成的相关问题需要围绕数据恢复、自动保存配置、日志分析和预防措施展开。</think>### PyCharm训练模型时突然关机的数据恢复与故障排查步骤 --- #### 一、数据恢复方法 1. **检查自动保存机制** 大多数深度学习框架(如TensorFlow/PyTorch)支持训练检查点(Checkpoint)功能。检查项目目录中是否存在类似`checkpoint.pth`或`model_epoch_*.h5`的文件。若存在,可通过加载检查点恢复训练进度[^3]。 ```python # PyTorch示例:加载检查点 checkpoint = torch.load('checkpoint.pth') model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) ``` 2. **搜索临时文件** - PyCharm本地历史记录:右键点击文件 → `Local History → Show History`,寻找关机前的代码修改记录。 - 系统临时文件夹:检查`/tmp`(Linux)或`C:\Users\用户名\AppData\Local\Temp`(Windows)中是否有缓存文件。 3. **日志追溯** 查看训练日志(如TensorBoard日志或控制台输出文件),定位中断时的最后输出信息,确定已完成的训练轮次(epoch)。 --- #### 二、故障排查与预防 1. **配置自动保存** - **调整检查点频率**:在代码中设置每N个epoch保存一次模型。 ```python # PyTorch示例:每5个epoch保存一次 if epoch % 5 == 0: torch.save(model.state_dict(), f'model_epoch_{epoch}.pth') ``` - **使用回调函数**(Keras/TensorFlow): ```python checkpoint_callback = ModelCheckpoint(filepath='model_{epoch:02d}.h5', save_freq='epoch') model.fit(..., callbacks=[checkpoint_callback]) ``` 2. **硬件与系统稳定性** - **电源保护**:为工作站配置UPS(不间断电源),避免意外断电[^2]。 - **温度监控**:使用工具(如`nvidia-smi`或HWMonitor)监控GPU/CPU温度,防止过热强制关机。 3. **日志深度分析** - **PyCharm运行日志**:查看`Help → Show Log in Explorer`中的`idea.log`,分析异常关闭原因。 - **系统日志排查**: - Linux:`journalctl -b -1`(查看上次启动日志)。 - Windows:事件查看器 → Windows日志 → 系统,筛选关键事件ID(如41表示意外重启)。 --- #### 三、引用关联建议 - 引用[2]提到hard reboot可能导致数据丢失,建议优先使用正常关闭流程(如命令行终止进程而非强制断电)。 - 引用[3]中的文件拆分思路可应用于训练任务,将长周期训练拆分为多个阶段,每阶段保存中间结果[^3]。 ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捡起一束光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值