极智AI | 讲解 TensorRT 显式batch 和 隐式batch

本文介绍了TensorRT中显式batch和隐式batch的区别,强调了显式batch在处理涉及batch维度操作时的优势,以及从隐式batch迁移到显式batch的工作量评估,包括开发模式设置和网络算子Layout调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

  大家好,我是极智视界,本文讲解一下 TensorRT 显式batch 和 隐式batch。

  TensorRT 支持使用两种方式来指定网络的 Layout,即:explicit batchimplicit batch。所谓 显式隐式 的差别就在于 Batch 这一维,即 显式 ==> NCHW隐式 ==> CHW。在比较老版本的 TensorRT 中一般就用 implicit batch 隐式batch,而现在新的开始慢慢用 explicit batch 进行替代。这是为啥呢?这主要是因为,随着算法的不断发展,网络中新出现了很多新算子、新结构,有些时候需要 操控 batch 这个维度,这个时候如果使用 隐式batch 来开发,显然是不可行的。

  隐式batch 模式不能胜任的场景主要包括:

  • Reducing across the batch dimension ==> batch 维度上的规约操作,如 [N, C, H, W] -> [1, C, H, W];
  • Reshaping the batch dimension ==> batch 维度上的变化,如 [N, C, H, W] -> [M, C, H, W];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值