极智AI | Realtime Multi-Person人体姿态估计之OpenPose

本文介绍了OpenPose,一种使用PAF(部件亲和场)进行实时多人人体姿态估计的技术。OpenPose采用Bottom-up方法,先检测关节再进行组装,与Top-down方法相比,虽组装难度大但效率更高。文章详细阐述了OpenPose的多阶段CNN架构、关键点预测和方向确定过程,以及如何利用PAF进行错误连线的过滤,展示了OpenPose在多人姿态估计中的应用效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多经验分享

大家好,我是极智视界,本文来介绍一下 Realtime Multi-Person人体姿态估计之OpenPose。

邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq

OpenPose 主要是采用一个叫做 PAF (Part Affinity Fields,翻译过来是叫 部件亲和场) 来预测人体各部位及其肢体之间的关系,可以更好地检测图片或视频中的人物姿态,如头部、手部和脚部等,并实现多人的实时姿态估计。目的是很明确的,就是更加实时、更加准确地实现多人的人体姿态估计,而采用的方法 PAF 可能就需要好好解释了。看下面的图,

将上面红色手臂放大后,就是上图中的右边部分,可以看到 RAF 的庐山真面目,原文对它的解释是这样的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值