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Abstract

We consider a general preferential attachment model, where the probability
that a newly arriving vertex connects to an older vertex is proportional to
a sublinear function of the indegree of the older vertex at that time. It is
well known that the distribution of a uniformly chosen vertex converges to
a limiting distribution. Depending on the parameters, this model can show
power law, but also stretched exponential behaviour. Using Stein’s method
we provide rates of convergence for the total variation distance. Our proof
uses the fact that the limiting distribution is the stationary distribution of a
Markov chain together with the generator method of Barbour.
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1 Introduction and main results

1.1 Introduction

Preferential attachment models, as popularized by Barabási and Albert [BA99],
rely only on a simple mechanism to explain the occurrence of power-law degree
distributions often observed in real-world networks: the network is modelled as a
growing sequence of random graphs, where the probability of connecting a newly
incoming vertex to an old vertex is proportional to its degree. Here we study a
general preferential attachment model, based on the model introduced by Dereich
and Mörters [DM09]. The connection probabilities are given by a general (sublin-
ear) function of the old degree and this framework is sufficiently general to lead
to typical degree distributions that can be power-laws, but also include stretched
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exponential distributions. Our main result gives rates of convergence for the to-
tal variation distance of the degree of a uniformly chosen vertex and the limiting
degree distribution.

For the model introduced in [DM09] we start with G1 being one vertex with no
edges. In each step we add one vertex. The graph Gn consists of n vertices, but
loops or multiple edges are not allowed. The new vertex connects to each of the
former vertices j independently with probability

P(n + 1 connects to j | Gn) =
f(deg−n (j))

n
,

where deg−n (j) is the indegree of vertex j at time n and the function f : N0 →
(0,∞) is such that f(n) ≤ n + 1. If f is a linear function in k, we refer to the
model as linear preferential attachment. Here the connections to old vertices are
sampled independently, so that the outdegree is random, however our framework
also allows for models with fixed outdegree (see below) that are closer to the
original mathematical formulation of the Barabási-Albert model due to [BRST01].

Here, we analyse the rates of convergence in total variation of the indegree of
a random uniformly chosen vertex, resp. the outdegree of vertex n, with Stein’s
method. Let Wn denote the indegree of a uniformly chosen vertex at time n in
the model described above. Then, our main theorem shows under fairly weak
conditions on f (essentially that eventually f(k) ≤ k): if W has the asymptotic
degree distribution identified in [DM09] (see also (3) below), then for all n ≥ 2

dTV(Wn,W ) ≤ C
log(n)

n
. (1)

We also give a weaker result if f is of the form f(k) = k + γ for some γ ∈ (0, 1).
Moreover, for the model with random outdegree, [DM09], we can also obtain rate of
convergence results for the outdegree when compared with a Poisson distribution.

For linear f , a result analogous to ours was shown in [For09], [PRR13a] and
[Ros13]. In the thesis [For09] various versions of the preferential attachment model
(including random and fixed outdegree) were studied using couplings and Stein’s
method. However, in her work only the former was used successfully to derive
rates of convergence, which in the best case are of the form (1). For the linear
model with fixed outdegree and where connections are made with probability
proportional to the degree plus a constant δ, there is an alternative proof of (1)
first in [PRR13a] (for δ = 0) and then in [Ros13]. These proofs use Stein’s method,
but crucially rely on the fact that the limiting distribution can be represented as
a mixture of a geometric (resp. negative binomially distributed for δ 6= 0) random
variable.

The first mathematical papers on preferential attachment models showed the pro-
portion of vertices with a particular degree is close to a power law including error
bounds, see [BRST01] for the first mathematical paper, [BL12] for an approach
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that also works for large degrees and [Hof17] for an excellent overview. These
results are often proved by first showing concentration of the empirical degree
distribution and then showing the expected degree sequence converges. However,
in these cases the bounds on the expected degree sequence are not strong enough
to give (1), see also the discussion in [Ros13].

Other questions that have been studied include error bounds for the degree of a
fixed vertex. Peköz, Röllin and Ross [PRR13a] applied Stein’s method successfully
to prove a rate of convergence in Kolmogorov distance for the indegree distribution
of any fixed vertex to a power law distribution by comparing it to a mixed negative
binomial distribution, whereas in [PRR13b] they provide rates of convergence in
total variation of a random vertex in a uniform attachment graph by applying
Stein’s method to the geometric distribution. In [PRR17] the authors prove a
rate of convergence in the multidimensional case for the joint degree distribution.
These articles consider models where every vertex has fixed outdegree.

Our results are based on a new application of Stein’s method. Compared to
previous results our methods apply to a generalisation of preferential attachment
models having very different limit laws, including power law, but also stretched
exponential, tail behaviour. This is remarkable, considering that Stein’s method
(at least in a first step) requires the characterization of the limiting distribution
in terms of the Stein operator. Secondly, our method is direct in that it gives a
Stein operator for the limiting distribution (unlike in [Ros13] where it is exploited
that the limiting distribution can be written as the mixture of a negative binomial
distribution). Our proof relies on the fact that the limiting distribution is the
invariant distribution of a continuous-time Markov chain and therefore it allows
to use Barbour’s generator method [Bar88] to take care of the first part of Stein’s
method. Finally, our method is robust in that it only depends on the marginal
distribution of a new vertex being connected to a particular old vertex, and so
allows to treat models with fixed and random outdegree at the same time.

Throughout we will use the following notation: N = {1, 2, . . .} denotes the natural
numbers, N0 = N ∪ {0} and [n] := {1, . . . , n}. For any two probability measures
µ, ν on (E,F) we will denote their total variation distance by

dTV(µ, ν) = sup{|µ(A) − ν(A)| : A ∈ F}.

Moreover, for any ranom variables X,Y taking values in E, we write dTV(X,Y ) :=
dTV(L(X),L(Y )).

1.2 Main results

Our methods do not rely on the fine details of the model under consideration, so
that we state our assumptions first in all generality and then highlight some of
the models that fit in this class.
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Assumptions (A). Fix d0 ∈ N0 and let f : N0 → (0,∞) such that f(n) ≤
max{n + 1 − d0, 1}. We assume that (Gn)n≥1 is a sequence of directed random
graphs with vertex set [n] := {1, . . . , n}. The initial graph G1 consists of vertex 1
and d0 (directed) self-edges. For any n ≥ 1, at time n + 1 we add vertex n + 1 to
the vertex set and insert at most one directed edge from n + 1 to j such that

P(n + 1 connects to j | Gn) =
f(deg−n (j))

n
. (2)

Here deg−n (j) denotes the indegree of vertex j after the nth vertex has been in-
serted.

Note that we have by construction that deg−n (j) ≤ d0 + n − 1, so that by the
condition on f the right hand side of (2) is indeed ≤ 1.

These assumptions do not completely specify the model: they allow for determin-
istic as well as random outdegree and also only impose conditions on the marginal
probabilities of connecting n + 1 to j. In particular, the following models are
included.

Example 1.1 (Preferential attachment with random outdegree, see [DM09]).
Suppose f(n) ≤ n + 1 for all n ∈ N0. We start with the graph G1 consisting of
one vertex and no edges. At time n+ 1, we add vertex n+ 1 to the vertex set and
independently for each k ∈ [n] add a directed edge from n+1 to k with probability

f(deg−n (k))

n
.

Example 1.2 (Preferential attachment with fixed outdegree). Start with G1 con-
sisting of vertex 1 and a (directed) self-loop. At time n+ 1 insert vertex n+ 1 and
connect it to exactly one previous vertex j ∈ [n] with probability

degn(j) + δ

n(2 + δ)
,

where degn(j) denotes the total degree of vertex j at time n and δ > −1 is a
parameter. Noticing that degn(j) = deg−n (j)+1, this fits into our framework with

f(k) = k+(1+δ)
2+δ and d0 = 1. This model is almost the model proposed in [BRST01]

(where however δ = 0 and we do not allow for self-loops of vertex n + 1) and it is
very closely related to what is referred to as model (b) in [Hof17, Chapter 8.2].

Example 1.3 (Spatial preferential attachment model). In [ACJP08], the authors
introduce the following spatial random graph model. Let S be the unit hypercube
in R

m. The initial graph consists of vertex 1 that is placed uniformly at random
into S and no edges. For each vertex i we define the sphere of influence S(i, n) of i
as the ball (in the torus metric induced by the Euclidean metric) that has volume
A1degin(i)+A2

n centered at the position of i, where A1, A2 ≥ 0. Fix a parameter
p ∈ [0, 1]. Then, at time n + 1, we insert vertex n + 1 at a position that is chosen
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uniformly at random in S. Now, independently for each vertex j such that the
position of n+ 1 is in S(j, n) insert an edge from n+ 1 to j with probability p. In
particular, we get

P(n + 1 connects to j | Gn) = p ·
A1deg

−
n (j) + A2

n
.

Thus, this model fits into our framework if we choose f(k) = pA1k + pA2 and
where we assume that the constants are chosen such that pA1, pA2 ≤ 1.

The limiting distribution of the asymptotic distribution of the indegree of a uni-
form vertex in the above examples is known (see e.g. [DM09, Thm. 1.1], [ACJP08,
Thm. 1.1]) and it is given as µ = (µk)k∈N0 with

µk =
1

1 + f(k)

k−1
∏

i=0

f(i)

1 + f(i)
, k ∈ N0. (3)

This is a probability distribution (see e.g. Lemma 2.1 below) and moreover, by
varying f , the limiting distribution can exhibit very different tail behaviour. As
discussed in Examples 1.3 and 1.4 in [DM09] we obtain for f(k) = γk + β

µk ∼
Γ(β+1

γ )

γΓ(βγ )
k−(1+ 1

γ
), for k → ∞.

Therefore, our framework allows for models with power-law distribution with tail
exponent 1 + 1/γ ∈ [2,∞). Furthermore, if f(k) ∼ γkα with 0 < α < 1, γ > 0,
then

log µk ∼
1

γ(1 − α)
k1−α, for k → ∞,

so that we obtain a limiting distribution with stretched exponential tails.

We can now state our main theorem.

Theorem 1.4. Let Wn denote the indegree of a uniformly chosen vertex at time
n in a preferential attachment model satisfying assumptions (A). Suppose further
that there exists k∗ ∈ N0 such that f(k) > k for all k < k∗ and f(k) ≤ k for all
k ≥ k∗. Then, there exists a constant C > 0 such that for all n ≥ 2

dTV(Wn,W ) ≤ C
log(n)

n
, (4)

where W ∼ µ and µ as in (3).

The condition that there exists k∗ ∈ N0 such that f(k) > k for all k < k∗ and
f(k) ≤ k for all k ≥ k∗ is for example fulfilled for all sublinear models such that
maxk ∆f(k) < 1, which is a popular condition in the setting of Example 1.1, see
e.g. [DM13].

The next result gives a weaker result in the regime, when f(k) ∈ [k, k+γ] for all k.
This is not surprising since for example in the case f(k) = k + γ, the distribution
has power law exponent 2 and does no longer have a finite mean.
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Theorem 1.5. Let Wn denote the indegree of uniformly chosen vertex at time n
in a model satisfying assumptions (A). Suppose further that f(k) ∈ [k, k + γ] for
all k ∈ N0 for some γ ∈ (0, 1). Then, there exists a constant C > 0 such that for
all n ≥ 1,

dTV(Wn,W ) ≤ C n−(1−γ),

where W ∼ µ and µ as in (3).

Theorem 1.4 as well as Theorem 1.5 deal with the indegree of a uniformly chosen
vertex. However, for the model described in Example 1.1 it also makes sense
to ask about the distribution of the random outdegree. [DM09] show that the
outdegree is approximately Poisson, the next theorem gives an error bound on
this approximation.

Theorem 1.6. Let Dn denote the outdegree of vertex n in the model described
in Example 1.1 and suppose for some γ ∈ (0, 1), we have f(k) ≤ γk + 1 for all
k ∈ N0. Then there exists C > 0 such that

dTV(Dn, Po(λn)) ≤ C











1
n+1 , for 0 < γ < 1

2 ,
log(n)

n , for γ = 1
2 ,

n−2(1−γ), for 1
2 < γ < 1,

where Po(λn) denotes the Poisson distribution with parameter λn = E [f(Wn−1)]
and Wn−1 has the distribution of the indegree of a uniformly chosen vertex at
time n − 1. Moreover, λn → λ := E[f(W )], where W ∼ µ as in (3). Finally, if
f(k) = γk + β for γ ∈ (0, 1), β ∈ [0, 1], then

|λn − E [f(W )]| ≤ n−1+γ .

Remark 1.7. The assumptions on the initial graph as formulated in the Assump-
tions (A) are fairly restrictive. For example, the model (b) described in [Hof17,
Chapter 8.2] does not fit exactly, as in that model we start with a graph of two
vertices connected by two edges. Indeed, if we consider the model with fixed out-
degree and change the initial conditions, then the normalization might not be an
exact multiple of n. However, our proofs will also go through, if we change the
assumption on the marginal connection probabilities to

P(n + 1 connects to j | Gn) =
f(deg−n (j))

n + α
,

for some α ≥ 0. With this modification and a corresponding specification of the
initial conditions, we can also deal with models with arbitrary starting config-
urations in the setting of Example 1.2, such as model (b) in [Hof17]. Another
example that would fit into this set-up is the model Ī described in [For09], where
f is linear and connections are made independently to each previous vertex, but
the normalization is n+α. In particular, using the coupling arguments in [For09],
our results also transfer to the other models described there. In the following, in
order to keep the notation simple, we restrict ourselves to the case α = 0.
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Remark 1.8. Our method does not cover directly the Barabási-Albert model in
the form introduced in [BRST01] (and so neither the generalisation in [Hof17]),
because they include the possibility of a self-loop for the incoming vertex. It
is possible to couple these models with model (b) (from the previous remark).

Unfortunately this coupling gives an error of order log(n)3

n . Therefore, we cannot
recover the results of [PRR13b] and [Ros13], who obtain the same error rates as
in our Theorem 1.4 for these models.

Other generalisations that we cannot deal with are the models with fixed outdegree
where the probability to connect to an old vertex is proportional to a non-linear
function as in [RTV07], which leads to a random normalization. Since this problem
arises in a wide class of modifications of preferential attachment models, dealing
with this problem is an interesting topic of future research.

1.3 Stein’s method and overview of proof

Stein’s method is a well-known tool for deriving rates of convergence of a random
variable to a known target distribution. First developed for the normal distribu-
tion in [Ste72], it has been adapted to several other cases of target distributions,
including Poisson in [Che75] but also many others. For a detailed overview of
Stein’s method see for example [Ros11].

The method can be divided into three main steps: first one has to find a charac-
terizing operator A of the target distribution µ, in the sense that for all functions
g in the domain of A and any random variable W ,

E [Ag(W )] = 0 ⇔ W ∼ µ. (5)

The second step now consists of finding a solution g := gh to the Stein-equation

h(k) −

∫

hdµ = Ag(k) (6)

for each h in a convergence-determining class of functions F . This then yields for
any random variable X and a random variable W ∼ µ that

dF (W,X) := sup
h∈F

|E [h(W )] − E [h(X)]| = sup
h∈F

E [Agh(X)] . (7)

Depending on F we get different distances on probability measures. Here we
are interested in the total variation distance so that we choose F = {1A(·), A ∈
Borel(R)}. In the last step one has to bound the right-hand side of (7) to get
bounds on the distributional distance of W and X.

In our case, in order to deal with steps 1 and 2, we will follow the generator
approach introduced by Barbour [Bar88]. This approach applies when A is the
(infinitesimal) generator of a continuous-time Markov chain (Zt)t≥0. In particular,
we have that (5) holds if and only if µ is the stationary distribution of the Markov

7



chain (Zt)t≥0. In Lemma 2.1, we will see that the Stein operator for our target
distribution µ in (3) is given as

Ag(k) = f(k)∆g(k) + g(0) − g(k), (8)

where g : N0 → R, ∆g(k) := g(k + 1) − g(k) and g such that E [g(Y )] < ∞ for
Y ∼ µ. So the corresponding Markov process is a jump process (Zt)≥0 on Z0 that
jumps from state k to k + 1 at rate f(k) and from any state at rate 1 back to the
state 0.

Applying standard results for Markov chains also allows to take care of step 2 and
we will show in Lemma 2.2 that gh is given as

gh(k) = −

∫ ∞

0

(

Ekh(Zt) −

∫

hdµ
)

dt, (9)

for any h ∈ F .

In the following we will explain the main parts of step 3, i.e. how to derive the
claimed error bounds from the right hand side of (7). The first part is independent
of preferential attachment models and we will show in Section 2.2 the following
smoothness estimate for the Stein solution: for any gA := g

1A
and A ⊂ N0, we

have that
f(k)∆gA(k) ≤ 1, for all k ∈ N0. (10)

In the second part, we use the following dynamic way of generating a uniform
random variable on [n] (cf. [For09]): let Jn be a Markov chain with J1 = 1 and
such that

P(Jn+1 = Jn |Jn) =
n

n + 1
and P(Jn+1 = n + 1 |Jn) =

1

n + 1
.

Then, we have that Jn is uniformly distributed on [n] for every n (cf. also
Lemma 2.5). In particular, we know that we can generate the indegree of a
uniform vertex as Xn := deg−n (Jn) and moreover (Xn) turns out to be a Markov
chain. If we additionally assume that d0 = 0 in the Assumptions (A), then as a
first step we use this Markov structure to show in Lemma 2.6 that

E [AgA(Xn+1)] =
1

n + 1

(

n
∑

ℓ=1

ℓ−1
∑

k=0

∆vA(k)h(k, ℓ) + vA(0)
)

, (11)

where

vA(k) := f(k)∆gA(k) and h(k, ℓ) := f(k)P(Xℓ = k) − P(Xℓ ≥ k + 1).

Then, since we have the smoothness estimate (10), as a last step it remains to
analyse h(k, ℓ) and show that these terms are small. The corresponding analysis is
carried out in Proposition 2.7. We first show inductively, that under the conditions
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of Theorems 1.4 and 1.5, for fixed ℓ the functions k 7→ h(k, ℓ) are first increasing
and then decreasing, which allows ultimately to deal with the inner sum over k.
Then, finally we show that for suitable constants C > 0, k ≤ ℓ− 1,

h(k, ℓ) ≤

{

C ℓ−1 under the assumptions of Thm. 1.4,

C ℓ−(1−γ) under the assumptions of Thm. 1.5.

These bounds then lead via (11) to the error bounds of log(n)/n and n−(1−γ) in
Theorems 1.4 and 1.5. The case d0 > 0 will be shown using an easy coupling
argument.

2 Proofs: Stein for the indegreee distribution

We will follow the strategy outlined in Section 1.3.

2.1 Deriving the Stein operator

In this section, we will deal with the Stein operator for µ defined in (3) and show
how to solve the Stein equation (6). This corresponds to steps 1 and 2 of the
general strategy outlined in Section 1.3.

Lemma 2.1. Let µ be given by (3). Then, µ is a probability distribution and any
N0-valued random variable W satisfies W ∼ µ if and only if

E[Ag(W )] = 0, (12)

for all g : N0 → R such that E[g(W )] < ∞, where

Ag(k) := f(k)
(

g(k + 1) − g(k)
)

+ g(0) − g(k).

Proof. Let Nt be the process that starts in 0 and jumps from i to i + 1 at rate
f(i). Then, the time of the kth jump is in distribution given by Sk =

∑k−1
i=0

1
f(i)Ei,

where E0, E1, . . . is an i.i.d. sequence of exponentials with rate 1. Following Cor. 50
in [Bha07]), let Y be an independent exponential random variable, so that

P(NY ≥ k) = P(Y ≥ Sk).

By first conditioning on Sk, we get

P(Y ≥ Sk) = E
[

E[1{Y ≥ Sk} |Sk]
]

= E[e−Sk ] = E[e
−

∑k−1
i=0

1
f(i)

Ei ]

=

k−1
∏

i=0

E[e−Ei/f(i)] =

k−1
∏

i=0

f(i)

1 + f(i)
, (13)
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using that E[e−λEi ] = 1
1+λ in the last step. This implies

P(NY = k) =

k−1
∏

i=0

f(i)

1 + f(i)
−

k
∏

i=0

f(i)

1 + f(i)

=

(

1 −
f(k)

1 + f(k)

) k−1
∏

i=0

f(i)

1 + f(i)
=

1

1 + f(k)

k−1
∏

i=0

f(i)

1 + f(i)
= µk.

In particular this shows that µ defines a probability measure on N0 and (13) gives

µ([k,∞)) =

k−1
∏

i=0

f(i)

1 + f(i)
= f(k − 1)µk−1. (14)

Using this connection to a jump process we obtain by integration by parts

∞
∑

k=1

g(k)µk = E
[

g
(

NY

)]

=

∫ ∞

0
E
[

g
(

Ns

)]

e−s ds

= g(0) +

∫ ∞

0
E

[

g
(

(

Ns + 1
)

− g
(

Ns

)

)

f
(

Ns

)

]

e−s ds

= g(0) + E

[

g
(

(

NY + 1
)

− g
(

NY

)

)

f
(

NY

)

]

.

In particular, if W ∼ µ, then W = ZY and we have just shown that in this
case (12) holds. To show the converse statement suppose W with distribution
(pk)k∈N0 satisfies (12). Then, by applying (12) with h = 1ℓ, we obtain the following
recursion

(1 + f(0))p0 = 1, and (1 + f(ℓ))pℓ = f(ℓ− 1)pℓ−1, for ℓ ∈ N.

Solving the recursion yields pk = µk for all k ∈ N0.

Following the generator method introduced by Barbour in [Bar88], the solution is
formally given by

gh(k) = −

∫ ∞

0

(

Ekh(Zt) −

∫

hdµ
)

dt, (15)

for all h, when the integral exists. Here Zt denotes the Markov process with
infinitesimal generator A, Ek its distribution conditional on Z0 = k, and µ its
equilibrium distribution.

Lemma 2.2. The unique solution of the Stein equation for µ, i.e.

Ag = h− µ(h), (16)

for any h = 1A, with A ⊂ N0 is given by

gh(k) = −

∫ ∞

0

(

Ekh(Zt) −

∫

hdµ
)

dt, (17)

where (Zt) is the continuous-time Markov process with generator A started in k
under Pk (resp. Ek).
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Proof. Let h = 1A for some A ⊂ N0. One can check that the Markov chain (Zt)
with generator A is irreducible, non-explosive and has invariant distribution µ. It
follows that Ekh(Zt) → µ(h) as t → ∞. Now, applying Proposition 1.5 in [EK86,
Chapter 1] with f = h− µ(h), gives

h(k) − Ek[h(Zt)] = −A

[
∫ t

0
(E⊙h(Zs) − µ(h)) ds

]

(k).

Taking t → ∞ directly yields that (17) is a solution of (16). In order to take the
limit on the right hand side it remains to show that the integral in (17) exists. We
have since h = 1A,

|gh(k)| ≤

∫ ∞

0
|Ek [h(Zt)] − E [h(Z)]| dt

=

∫ ∞

0

∣

∣

∣
E

[

h(Z
(k)
t )
]

− E

[

h(Z
(µ)
t )

]∣

∣

∣
dt

≤

∫ ∞

0
min

(Xt,Yt) coupling of (Z
(k)
t ,Z

(µ)
t )

P(Xt 6= Yt) dt.

We will now construct a coupling (Xt, Yt) of Z
(k)
t and Z

(µ)
t in the following way:

let X0 = k and choose Y0 according to µ. We let both chains evolve independently
until Y falls to zero at a random time τ . We then force X to fall to zero as well
and from that point on the two chains evolve together, so that Xt = Yt for t ≥ τ .

One can easily check that this defines a coupling of Z
(k)
t and Z

(µ)
t . As Y falls

down to zero at rate one we get

P(Xt 6= Yt) ≤ P(τ ≥ t) = e−t

so that

|gh(k)| ≤

∫ ∞

0
e−t dt = 1,

which completes the proof.

2.2 Bounding the Stein solution

In this section, we exploit the connection to the Markov process with generator
A to find bounds on the Stein solution gA := g

1A
for A ⊂ N0. This part of

the proof only depends on the limiting distribution µ and does not make use of
the preferential attachment setting. More precisely, we would like to show that
vA(k) := f(k)gA(k) is uniformly bounded in k. As we will see later on, gA can be
written as a linear combination of gj := g

1{j}
. Therefore, we start by calculating

the latter.
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Lemma 2.3. For gj := gh for h = 1(· = j) as in (17) we have

∆gj(k) = gj(k + 1) − gj(k) =















−
µj

µk

1
f(k)(1+f(k)) , for j ≥ k + 1,

1
1+f(j) , for j = k,

0, for j ≤ k − 1.

(18)

Proof. We apply the techniques used in [BX01] and adapt them to our Markov
process Zt. Define

τk,k+1 = inf{t : Z
(k)
t = k + 1},

where Z
(k)
t denotes a Markov process with generator A started in k. Then, for

k ≤ j − 1 we obtain via the representation (17) of the Stein solution,

gj(k) = −

∫ ∞

0

(

E
[

1{j}(Z
(k)
t )
]

− µj

)

dt

= −E

[

∫ τk,k+1

0

(

1{j}(Z
(k)
t ) − µj

)

dt
]

− E

[

∫ ∞

τk,k+1

(

1{j}(Z
(k)
t ) − µj

)

dt
]

= µjE [τk,k+1] + gj(k + 1),

where the last equality uses the strong Markov property of Zt. Rearranging yields

gj(k) − gj(k + 1) = µjE [τk,k+1] ≥ 0

for k ≤ j−1. Following the same procedure for k ≥ j+1 and τk,0 = inf{t : Z
(k)
t =

0} we get

gj(k) = −

∫ ∞

0

(

E
[

1{j}(Z
(k)
t )
]

− µj

)

dt

= −E

[

∫ τk,0

0
(1{j}(Z

(k)
t ) − µj) dt

]

− E

[

∫ ∞

τk,0

(1{j}(Z
(k)
t ) − µj) dt

]

= µjE [τk,0] + gj(0)

and thus

gj(k) − gj(0) = µjE [τk,0]

for k ≥ j + 1. Noticing that E [τk,0] = 1 for all k, since the rate by which the
process Zt falls down to 0 is 1, independent of the current state of the process,
this simplifies to

gj(k) − gj(0) = µj.

This means that gj(k) is constant for k ≥ j + 1, so that

gj(k + 1) − gj(k) = 0, for k ≥ j + 1.

12



Furthermore, we have

gj(j + 1) = −

∫ ∞

0

(

E
[

1{j}(Z
(j+1)
t )

]

− µj

)

dt

= −E

[

∫ τj+1,j

0
(1{j}(Z

(j+1)
t ) − µj) dt

]

− E

[

∫ ∞

τj+1,j

(1{j}(Z
(j+1)
t ) − µj) dt

]

= µjE [τj+1,j] + gj(j)

= µj

(

E[τj+1,0] + E[τ0,j]
)

+ gj(j)

= µj (1 + E [τ0,j]) + gj(j),

yielding

gj(j + 1) − gj(j) = µj (1 + E [τ0,j]) = µjE [τj,j] ≥ 0,

where τj,j defines the first return time to j of the Markov chain started at j.

Thus the following equations hold for the Stein solution gj :

gj(k + 1) − gj(k) =











−µjE [τk,k+1] , for j ≥ k + 1,

µjE [τj,j] , for j = k,

0, for j ≤ k − 1.

(19)

We can simplify this expression further as follows. Let Sk be the first jump time

of Z
(k)
t , then by definition of the Markov chain, we have that Sk ∼ Exp(1 + f(k)).

Since Z
(k)
t jumps to k + 1 at rate f(k) and to 0 at rate 1 we obtain

E [τk,k+1] = E[Sk] +
1

1 + f(k)
E[τ0,k+1] =

1

1 + f(k)
(1 + E[τ0,k] + E[τk,k+1])

and thus

E [τk,k+1] =
1

f(k)

(

1 + E [τ0,k]
)

=
1

f(k)
E [τk,k] . (20)

A standard result for Markov chains, see e.g. [Nor98, Thm. 3.6.3], yields that

µj =
1

(1 + f(j))E [τj,j]
(21)

Rearranging (21) and combining it with (19) and (20) yields the statement of the
lemma.

Proposition 2.4. For any k ∈ N0 and A ⊂ N0, we have

|vA(k)| ≤ 1.
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Proof. First note that

gA(k) = −

∫ ∞

0

(

E
[

1(Z
(k)
t ∈ A)

]

− µ(A)
)

dt

= −

∫ ∞

0

(

E

[

∑

j∈A

1(Z
(k)
t = j)

]

−
∑

j∈A

µj

)

dt

=
∑

j∈A

(

−

∫ ∞

0

(

E
[

1(Z
(k)
t = j)

]

− µj

)

dt

)

=
∑

j∈A

gj(k). (22)

Consequently, we have by Lemma 2.3

vA(k) =
∑

j∈A

f(k)∆gj(k) = −
f(k)

µkf(k)(1 + f(k))
µ(A ∩ [k,∞)) +

f(k)

1 + f(k)
1k∈A.

Using that by (14) µ([k,∞)) =
∏k−1

i=0
f(i)

1+f(i) = (1 + f(k))µk , we obtain

vA(k) = −
1

µ([k,∞))
µ(A ∩ [k,∞)) +

f(k)

1 + f(k)
1k∈A,

so that the proposition follows immediately.

2.3 Applying Stein’s method to the preferential attachment model

We use the following Markov chain to describe the evolution of the indegree of a
uniform vertex. Similar ideas were also used in [DM09, For09].

Lemma 2.5. Let Xn be a Markov chain with P(X1 = 0) = 1 and transition
probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =















f(i)
n+1 if j = i + 1,

n−f(i)
n+1 if j = i,

1
n+1 if j = 0,

and

P(Xn+1 = j |Xn = 0) =







f(0)
n+1 if j = 1,

1 − f(0)
n+1 if j = 0.

Then L(Xn) = L(Wn), where Wn denotes the indegree of the uniformly chosen
vertex in any preferential attachment model at time n satisfying Assumptions (A)
with d0 = 0.

Note that the Markov chain starts at time 1 to match the index of the random
graph.
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Proof. Consider the Markov chain (Jn)n∈N started with J1 = 1 and such that for
n ≥ 1

P(Jn+1 = Jn|Jn) =
n

n + 1
and P(Jn+1 = n + 1|Jn) =

1

n + 1
.

Then it is straight-forward to check by induction that Jn is uniformly distributed
on {1, . . . , n}. We now set Xn := deg−n (Jn), so that in particular L(Wn) = L(Xn).
Then using the dynamics of the preferential attachment model and the tower
property, the following transition probabilities hold for Xn and 1 ≤ j ≤ n

P(Xn+1 = j + 1|Xn = j) =
f(j)

n
×

n

n + 1
=

f(j)

n + 1
,

P(Xn+1 = j|Xn = j) = (1 −
f(j)

n
) ×

n

n + 1
=

n− f(j)

n + 1
,

P(Xn+1 = 0|Xn = j) =
1

n + 1
.

Moreover, for j = 0,

P(Xn+1 = 1|Xn = 0) =
f(0)

n
×

n

n + 1
=

f(0)

n + 1
,

P(Xn+1 = 0|Xn = 0) = (1 −
f(0)

n
) ×

n

n + 1
+

1

n + 1
= 1 −

f(0)

n + 1
.

This completes the proof of the lemma.

Following the discussion above in Section 1.3, the next step is to find a bound on

E [AgA(Wn+1)] = E [AgA(Xn+1)]

= E [f(Xn+1)∆gA(Xn+1) + (gA(0) − gA(Xn+1))] ,

where we recall that ∆gA(k) := gA(k + 1) − gA(k).

Lemma 2.6. For the Markov chain (Xn)n≥0 defined in Lemma 2.5 and vA(k) :=
f(k)∆gA(k), with A ⊂ N0, we have

E [AgA(Xn+1)]

=
1

n + 1

((

n
∑

ℓ=1

ℓ−1
∑

k=0

∆vA(k)
(

f(k)P(Xℓ = k) − P(Xℓ ≥ k + 1)
)

)

+ vA(0)
)

. (23)

Proof. Let h : N0 → R be such that h(0) = 0. Then,

E [h(Xn+1)] = E [E [h(Xn+1) |Xn]]

= E

[

h(Xn)
n− f(Xn)

n + 1
+ h(Xn + 1)

f(Xn)

n + 1

]

=
n

n + 1
E[h(Xn)] +

1

n + 1
E[f(Xn)∆h(Xn)].
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By iteration and using that X1 = 0, we get

E [h(Xn+1)] =
1

n + 1

n
∑

ℓ=1

E[f(Xℓ)∆h(Xℓ)].

Define
h(k) = AgA(k) − vA(0) = vA(k) + (gA(0) − gA(k)) − vA(0).

Thus, we obtain

E[AgA(Xn+1)] = E[h(Xn+1)] + vA(0)

=
1

n + 1

n
∑

ℓ=1

(

E[f(Xℓ)∆vA(Xℓ)] − E[f(Xℓ)∆gA(Xℓ)]
)

+ vA(0)

=
1

n + 1

n
∑

ℓ=1

ℓ−1
∑

k=0

f(k)∆vA(k)P(Xℓ = k)

−
1

n + 1

n
∑

ℓ=1

ℓ−1
∑

k=0

(vA(k) − vA(0))P(Xℓ = k) +
vA(0)

n + 1
. (24)

For the second sum, we write

ℓ−1
∑

k=0

(vA(k) − vA(0))P(Xℓ = k) =

ℓ−1
∑

k=0

k−1
∑

i=0

∆vA(i)P(Xℓ = k)

=

ℓ−1
∑

i=0

∆vA(i)

ℓ−1
∑

k=i+1

P(Xℓ = k) =

ℓ−1
∑

i=0

∆vA(i)P(Xℓ ≥ i + 1).

Combining the latter with (24) yields the statement of the lemma.

2.4 Bounding the difference f(k)P(Xl = k)− P(Xl ≥ k + 1)

Proposition 2.7. Suppose f satisfies f(k) ≤ k + 1. Define

h(k, ℓ) := f(k)P(Xℓ = k) − P(Xℓ ≥ k + 1),

where (Xℓ)ℓ≥1 is the Markov chain from Lemma 2.5.

(i) Then, for any k ∈ N0, ℓ ∈ N we have

h(k, ℓ) ≥ 0,

and for k ≥ ℓ, we have h(k, ℓ) = 0.

(ii) Suppose there exists K such that k ≤ f(k) ≤ k + 1 for all 0 ≤ k ≤ K, then
for all ℓ ≤ K + 1, we have

h(k + 1, ℓ) − h(k, ℓ) ≥ 0 for all k ≤ ℓ− 2 (25)
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(iii) Assume that there exist k∗ such that f(k) ≤ k for all k ≥ k∗ and f(k) > k
for k < k∗. Then, for all ℓ ∈ N there exists I(ℓ) ∈ {0, . . . , ℓ− 1} such that

h(k + 1, ℓ) − h(k, ℓ)

{

≥ 0 if k < I(ℓ),
≤ 0 if k ≥ I(ℓ).

(26)

Moreover, I(ℓ + 1) ∈ {I(ℓ), I(ℓ) + 1}.

(iv) Assume there exists k∗ ∈ N0 such that f(k) ≤ k for all k ≥ k∗. Then, there
exists a constant C > 0 such that for all k ∈ N0, ℓ ∈ N,

h(k, ℓ) ≤
C

ℓ
.

(v) If there exists γ ∈ (0, 1) such that f(k) ∈ [k, k + γ] for all k ∈ N0, then

sup
k∈N0

h(k, ℓ) ≤ Cℓ−(1−γ).

Before we start with the proof of the proposition, we derive a recursion for the
coefficients h and also for its increments.

Lemma 2.8. Let h be defined as in Proposition 2.7, then h(k, ℓ) = 0 for all k ≥ ℓ
and for all ℓ ∈ N, k ∈ N0, we have

h(k, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) +
f(k)

ℓ + 1
h(k − 1, ℓ), (27)

where we define h(−1, ℓ) = 0. Moreover, if we define ∆(1)h(k, ℓ) := h(k + 1, ℓ) −
h(k, ℓ), we have that for all ℓ ∈ N and k ≤ ℓ− 1

∆(1)h(k, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(k + 1)

ℓ + 1

)

∆(1)h(k, ℓ) +
f(k)

ℓ + 1
∆(1)h(k − 1, ℓ) (28)

Proof. Note that since Xℓ ≤ ℓ − 1 P-a.s, we have h(k, ℓ) = 0 for any k ≥ ℓ.
Moreover, by the definition of the Markov chain (Xn), for k ≥ 1,

h(k, ℓ + 1) = f(k)P(Xℓ+1 = k) − P(Xℓ+1 ≥ k + 1)

= f(k)
((

1 −
f(k) + 1

ℓ + 1

)

P(Xℓ = k) +
f(k − 1)

ℓ + 1
P(Xℓ = k − 1)

)

−
( ℓ

ℓ + 1
P(Xℓ ≥ k + 1) +

f(k)

ℓ + 1
P(Xℓ = k)

)

=

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) −
f(k)

ℓ + 1
P(Xℓ ≥ k + 1)

+
f(k)

ℓ + 1

(

f(k − 1)P(Xℓ = k − 1) − P(Xℓ = k)
)

=

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) +
f(k)

ℓ + 1
h(k − 1, ℓ).
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Note for k = 0, we have

h(0, ℓ + 1) = f(0)P(Xℓ+1 = 0) − P(Xℓ+1 ≥ 1)

= f(0)
((

1 −
f(0)

ℓ + 1

)

P(Xℓ = 0) +
1

ℓ + 1
P(Xℓ ≥ 1)

)

−
f(0)

ℓ + 1
P(Xℓ = 0) −

(

1 −
1

ℓ + 1

)

P(Xℓ ≥ 1)

=
(

1 −
f(0) + 1

ℓ + 1

)

h(0, ℓ) =
( ℓ

ℓ + 1
−

f(0)

ℓ + 1

)

h(0, ℓ).

Therefore, the identity (27) also holds for k = 0 since we defined h(−1, ℓ) = 0 for
all ℓ ∈ N.

Note that by (27),

h(k + 1, l + 1) − h(k, l + 1)

=

(

ℓ

ℓ + 1
−

f(k + 1)

ℓ + 1

)

h(k + 1, ℓ) +
f(k + 1)

ℓ + 1
h(k, ℓ)

−

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) −
f(k)

ℓ + 1
h(k − 1, ℓ)

=

(

ℓ

ℓ + 1
−

f(k + 1)

ℓ + 1

)

(h(k + 1, ℓ) − h(k, ℓ)) +
f(k)

ℓ + 1
(h(k, ℓ) − h(k − 1, ℓ)) ,

which shows (28).

Proof of Proposition 2.7. Before we start with the proof, note that for ℓ = 2, we
have

h(0, 2) = f(0)P(X2 = 0) − P(X2 ≥ 1)

= f(0)

(

1 −
f(0)

2

)

−
f(0)

2
=

f(0)(1 − f(0))

2
,

(29)

and moreover,

h(1, 2) = f(1)P(X2 = 1) =
f(1)f(0)

2
. (30)

(i) We now show that for any ℓ ∈ N: h(k, ℓ) ≥ 0 for any k ∈ N0 by induction
on ℓ. The induction hypothesis follows from (29) and (30) since f(0) ≤ 1. We
now assume that the statement holds for some ℓ, then from (27) and for k ≤ ℓ− 1
we have

h(k, ℓ + 1) =
( ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) +
f(k)

ℓ + 1
h(k − 1, ℓ),

which is nonnegative due to the induction hypothesis and the condition that
f(k) ≤ k + 1 ≤ ℓ. For k = ℓ we have h(ℓ, ℓ + 1) = f(ℓ)P(Xℓ+1) ≥ 0. This
implies the induction step since all other terms are 0.
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(ii) Let now f be such that there exists K such that k ≤ f(k) ≤ k + 1 for all
k ≤ K. As before we will use induction on ℓ to show the stated result. For ℓ = 2
we get from (29) and (30)

h(1, 2) − h(0, 2) =
f(0)

2
(f(0) + f(1) − 1) ≥ 0,

as f(1) ≥ 1 by assumption.

Suppose that the statement (25) is true for some ℓ ≤ K. By (28) we obtain

∆(1)h(k, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(k + 1)

ℓ + 1

)

∆(1)h(k, ℓ) +
f(k)

ℓ + 1
∆(1)h(k − 1, ℓ),

which is nonnegative for k ≤ ℓ − 2 due to the induction hypothesis and since
f(k + 1) ≤ f(ℓ − 1) ≤ ℓ. It remains to show that ∆(1)h(ℓ − 1, ℓ + 1) ≥ 0. Again
by (28) and using that ∆(1)h(ℓ− 1, ℓ) = −h(ℓ− 1, ℓ), we get that

∆(1)h(ℓ− 1, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(ℓ)

ℓ + 1

)

(−h(ℓ− 1, ℓ)) +
f(ℓ− 1)

ℓ + 1
∆(1)h(ℓ− 2, ℓ)

=
f(ℓ) − ℓ

ℓ + 1
h(ℓ− 1, ℓ) +

f(ℓ− 1)

ℓ + 1
∆(1)h(ℓ− 2, ℓ),

which is nonnegative by induction hypothesis and since f(ℓ) ≥ ℓ.

(iii) Again we show by induction on ℓ that there exists I(ℓ) ∈ {0, . . . , ℓ− 1} such
that (26) is valid. Note for ℓ = 2 the statement holds trivially. Moreover, for
ℓ ≤ k∗ the statement holds by (ii) with I(ℓ) = ℓ− 1.

Suppose the statement (26) is true for some ℓ ≥ k∗. By (28) we obtain

∆(1)h(k, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(k + 1)

ℓ + 1

)

∆(1)h(k, ℓ) +
f(k)

ℓ + 1
∆(1)h(k − 1, ℓ).

From this we can deduce that if k < I(ℓ), then since I(ℓ) ≤ ℓ − 1, we have
f(k + 1) ≤ k + 2 ≤ ℓ, so that ∆(1)h(k, ℓ + 1) ≥ 0. Conversely, if k > I(ℓ) and
k ≤ ℓ − 2, we can deduce similarly that ∆(1)h(k, ℓ + 1) ≤ 0. It remains to show
that ∆h(1)(k, ℓ + 1) ≤ 0 for k = ℓ, ℓ− 1 if ℓ− 1 > I(ℓ). Note the case k = ℓ holds
since ∆(1)h(ℓ, ℓ + 1) = −h(ℓ, ℓ + 1). By the recursion (27) together with (30), we
get

h(ℓ, ℓ + 1) =
f(ℓ)

ℓ + 1
h(ℓ− 1, ℓ) = f(ℓ)

ℓ
∏

i=1

f(i− 1)

i + 1
. (31)
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Now, since ∆(1)h(ℓ− 2, ℓ) ≤ 0, we have again by (27),

∆(1)h(ℓ− 1, ℓ + 1)

= h(ℓ, ℓ + 1) −
( ℓ

ℓ + 1
−

f(ℓ− 1)

ℓ + 1

)

h(ℓ− 1, ℓ) −
f(ℓ− 1)

ℓ + 1
h(ℓ− 2, ℓ)

≤ h(ℓ, ℓ + 1) −
ℓ

ℓ + 1
h(ℓ− 1, ℓ)

= f(ℓ)

ℓ
∏

j=1

f(j − 1)

j + 1
−

ℓ

ℓ + 1
f(ℓ− 1)

ℓ−1
∏

j=1

f(j − 1)

j + 1

=
f(ℓ− 1)

ℓ + 1
(f(ℓ) − ℓ)

ℓ−1
∏

j=1

f(j − 1)

j + 1
,

which is negative as f(ℓ) ≤ ℓ since ℓ ≥ k∗. In particular, we have seen that
I(ℓ + 1) ∈ {I(ℓ), I(ℓ) + 1}.

(iv) Define

C := f(0)
(

1 ∨ max
1≤k≤k∗

k
∏

i=1

f(i)

i

)

.

Then, we will show inductively that for all ℓ ∈ N:

h(k, ℓ) ≤
C

ℓ
, for all k ≤ ℓ− 1. (32)

For ℓ = 1, we have

h(0, 1) = f(0)P(X1 = 0) = f(0) ≤ C.

Now, assume that (32) holds for some ℓ ∈ N. Using the identity (27) we obtain
for k ≤ ℓ− 1

h(k, ℓ + 1) =

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

h(k, ℓ) +
f(k)

ℓ + 1
h(k − 1, ℓ)

≤

(

ℓ

ℓ + 1
−

f(k)

ℓ + 1

)

C

ℓ
+

f(k)

ℓ + 1

C

ℓ
=

C

ℓ + 1
,

where we used that f(k) ≤ k + 1 ≤ ℓ in the second step. For k = ℓ, we have
by (31)

h(ℓ, ℓ + 1) = f(ℓ)

ℓ
∏

i=1

f(i− 1)

i + 1
=

f(0)

ℓ + 1

ℓ
∏

i=1

f(i)

i
.

Then, if ℓ ≤ k∗, this is trivially bounded by C/(ℓ + 1). Furthermore, if ℓ > k∗,
then

h(ℓ, ℓ + 1) =
f(0)

ℓ + 1

ℓ
∏

i=1

f(i)

i
≤

C

ℓ + 1

k
∏

i=k∗+1

f(i)

i
≤

C

ℓ + 1
,

20



since f(i) ≤ i for all i ≥ k∗. This completes the induction step.

(v) Note that by (ii), k 7→ h(k, ℓ) is increasing for k ≤ ℓ − 1. In particular, we
have by (i)

sup
k∈N0

h(k, ℓ) = sup
k≤ℓ−1

h(k, ℓ) = h(ℓ− 1, ℓ).

By (31), we get that

h(ℓ− 1, ℓ) = f(ℓ− 1)

ℓ−1
∏

i=1

f(i− 1)

i + 1
≤

∏ℓ−1
i=0(i + γ)

ℓ!
=

1

Γ(γ)

Γ(ℓ + γ)

Γ(ℓ + 1)
∼

1

Γ(γ)
ℓγ−1,

using the asymptotics for the Gamma function. This immediately gives statement
(v).

2.5 Proofs of Theorems 1.4 and 1.5

We can combine our previous estimates to prove the two main theorems simulta-
neously.

Proofs of Theorems 1.4 and 1.5. We first consider the case that the preferential
attachment model satisfies Assumption (A) with d0 = 0 so that we can gener-
ate the indegree of a uniform vertex using the Markov chain (Xℓ)ℓ≥1 defined in
Lemma 2.5. Using the notation h(k, ℓ) = f(k)P(Xℓ = k)−P(Xℓ ≥ k+ 1), we have
from Lemma 2.6, for any A ⊂ N0,

E[AgA(Xn+1)] =
1

n + 1

((

n
∑

ℓ=1

ℓ−1
∑

k=0

∆vA(k)h(k, ℓ)
)

+ vA(0)
)

.

Using a discrete integration by parts formula and the fact that h(ℓ, ℓ) = 0, we can
rewrite the inner sum as

ℓ−1
∑

k=0

∆vA(k)h(k, ℓ) = −vA(0)h(0, ℓ) −
ℓ−1
∑

k=0

vA(k + 1)∆(1)h(k, ℓ).

Under the assumptions of Theorem 1.4 we can apply Proposition 2.7(iii) and for
Theorem 1.5 part (ii) of Proposition 2.7 to deduce that in both cases there exist
I(ℓ) such that ∆(1)h(k, ℓ) ≥ 0 for k < I(ℓ) and ∆(1)h(k, ℓ) ≤ 0 for k ≥ I(ℓ). In
particular, we have that

∣

∣

∣

ℓ−1
∑

k=0

vA(k + 1)∆(1)h(k, ℓ)
∣

∣

∣

≤ sup
k

|vA(k)|
(

h(I(ℓ), ℓ) − h(0, ℓ) + h(I(ℓ), ℓ) − h(ℓ, ℓ)
)

≤ 2 sup
k

|vA(k)| sup
k≤ℓ−1

h(k, ℓ).
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Therefore, we get
∣

∣E[AgA(Xn+1)]
∣

∣

≤
|vA(0)|

n + 1
+
∣

∣

∣

1

n + 1

n
∑

ℓ=1

((

ℓ−1
∑

k=0

vA(k + 1)∆(1)h(k, ℓ)
)

+ vA(0)h(0, ℓ)
)
∣

∣

∣

≤
|vA(0)|

n + 1
+

2

n + 1
sup
k

|vA(k)|

n
∑

ℓ=1

sup
k≤ℓ−1

h(k, ℓ).

Hence, if we combine this estimate with Proposition 2.4 we obtain that

dTV(Wn+1,W ) = sup
A⊂N0

∣

∣E[AgA(Xn+1)]
∣

∣ ≤
1

n + 1
+

2

n + 1

n
∑

ℓ=1

sup
k≤ℓ−1

h(k, ℓ).

Finally, we note that in the case of Theorem 1.4, we can apply Proposition 2.7
(iv) to deduce that in this case, there exists a constant C > 0 such that

dTV(Wn+1,W ) ≤
1

n + 1
+

2C

n + 1

n
∑

ℓ=1

1

ℓ
,

which immediately gives the required bound. In the case of Theorem 1.5, we can
instead apply Proposition 2.7 (v) to get a constant C > 0 such that

dTV(Wn+1,W ) ≤
1

n + 1
+

2C

n + 1

n
∑

ℓ=1

ℓ−(1−γ),

which again yields the statement of the theorem.

Finally, we consider the case when the model satisfies Assumptions (A) with d0 >
0. In this case, by the same argument as in Lemma 2.5, the indegree of a uniformly
chosen vertex has the same distribution as a Markov chain (X̃n)n≥1 with X̃1 = d0,
but the same transition probabilities as (Xn)n≥1. Let τ = inf{k ≥ 2 : X̃k = 0}.
We can couple (Xn), (X̃n) by first letting X̃n evolve and then letting Xn evolve
independently until time τ . Further, we set Xk := X̃k for all k ≥ τ . By the
characterization of dTV in terms of couplings, we thus have

dTV(Xn, X̃n) ≤ P(τ > n) =
n
∏

i=1

(

1 −
1

i + 1

)

=
1

n + 1
.

By the first part of the proof, this completes the proof also for d0 > 0.

3 Rate of convergence for the outdegree

We now consider the model introduced in Example 1.1, where connections to old
vertices are made independently, and prove Theorem 1.6, i.e. show the rate of
convergence for the outdegree Dn = deg+n (n) of vertex n.

We will need the following moment bound.
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Lemma 3.1. For the preferential attachment model as in Example 1.1 with f(k) ≤
γk + 1 for all k, and some γ ∈ (0, 1), we have for all n ∈ N,

E[f(deg−n (i))] ≤
(n

i

)γ
, for all i ∈ [n].

Proof. For the linear attachment rule f (γ) := γ · +1, the statement of the lemma
is proved in [DM13, Lemma 2.7]. Denote the degrees in the corresponding pref-
erential attachment model by deg−,γ

n (i) and consider general f and associated
degrees deg−n (i). Then, since f ≤ f (γ) we can couple the models so that deg−n (i) ≤
deg−,γ

n (i) for all i ∈ [n], n ∈ N. In particular, we have that

E[f(deg−n (i))] ≤ E[f (γ)(deg−n (i))] ≤ E[f (γ)(deg−,γ
n (i))] ≤

(n

i

)γ
,

as required.

Using a result of [BH84] for Poisson approximation (again based on the Chen-Stein
method), we can now prove Theorem 1.6.

Proof of Theorem 1.6. By the independence assumption for incoming edges, it
follows that the indegree evolutions (deg−k (i))k≥i and (deg−k (j))k≥j are indepen-
dent if i 6= j. In particular, if we write Xi,n = 1{ there is an edge from n to
i} = deg−n (i) − deg−n−1(i), then we can write the outdegree Dn of vertex n as

Dn =
n−1
∑

i=1

Xi,n,

i.e. as the sum of independent Bernoulli variables. Note that

pi,n := P(Xi,n = 1) = E
[

E
[

deg−n (i) − deg−n−1(i)|Gn−1

]]

= E

[

f(degn−1(i))

n− 1

]

.

Therefore,

λn := E [Dn] = E

[ 1

n− 1

n
∑

i=1

f(degn−1(i))
]

= E [f(Wn−1)] ,

where Wn−1 denoting the indegree of a uniformly chosen vertex after the insertion
of vertex n − 1. From the proof of Theorem 1.1 (b) in [DM09] we know that
λn → E[f(W )] if W ∼ µ. Applying [BH84, Thm. 1.1] we obtain that

dTV(Dn, Po(λn)) ≤
1 − e−λn

λn

n−1
∑

i=1

p2i,n ≤ min{1,
1

λn
}
n−1
∑

i=1

p2i,n. (33)
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In remains to control the sum on the right hand side. By Lemma 3.1, we have
that

n−1
∑

i=1

p2i,n =
1

(n− 1)2

n−1
∑

i=1

E[f(deg−n−1(i))]2 ≤
1

(n− 1)2

n−1
∑

i=1

(n

i

)2γ

Since λn → λ := E[f(W )] we can deduce from (33) that

dTV(Dn, Po(λn)) ≤ C











1
n+1 , for 0 < γ < 1

2 ,
log(n)

n , for γ = 1
2 ,

n−2(1−γ), for 1
2 < γ < 1,

,

for a suitable constant C > 0, which proves the first part of Theorem 1.6.

For the final part of Theorem 1.6, we assume that f(k) = γk+β, for γ ∈ (0, 1), β ∈
[0, 1]. First note that in this case by (14)

λ = E[f(W )] = γE[W ] + β = γ
∑

k≥1

µ([k,∞)) + β

= γ
∑

k≥1

f(k − 1)µk−1 + β = γλ + β.

In particular, λ = β
1−γ . Following a similar argument as in the proof of Theorem

1.1 (b) in [DM09], we have that

E[f(Wn+1)] =
1

n + 1

n+1
∑

i=1

E

[

E[f(deg−n+1(i)) | Gn]
]

=
1

n + 1

n
∑

i=1

E

[

E[f(deg−n+1(i)) − f(deg−n (i)) | Gn]
]

+
f(0)

n + 1
+

1

n + 1

n
∑

i=1

E

[

E[f(deg−n (i)) | Gn]
]

=
1

n + 1

(

n
∑

i=1

E

[

E[γ(deg−n+1(i) − deg−n (i)) | Gn]
]

+ β +

n
∑

i=1

E[f(deg−n (i))]

)

=
1

n + 1

n
∑

i=1

γE
[f(deg−n (i)

n

]

+
β

n + 1
+

1

n + 1

n
∑

i=1

E[f(deg−n (i))]

= (1 −
1 − γ

n + 1
)E[f(Wn)] +

β

n + 1
.

Using that λ = β
1−γ , we obtain that for λ̄n+1 := E[f(Wn)] − λ,

λ̄n+1 =
(

1 −
1 − γ

n

)

λ̄n.
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Hence,

|λ̄n+1| =
n
∏

i=1

(

1 −
1 − γ

i

)

|λ̄1| ≤ Cn−(1−γ),

for a suitable constant C > 0, as claimed.
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