JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    A first step to accelerating fingerprint matching based on deformable minutiae clustering

    • Autor
      Romero, Luis F.; Tabik, Siham; Sánchez, Andrés Jesús; Medina Pérez, Miguel Angel; Herrera, Francisco
    • Fecha
      2018-07-12
    • Palabras clave
      Identificación biométrica - Congresos; Dactiloscopia - Congresos
    • Resumen
      Fingerprint recognition is one of the most used biometric methods for authentication. The identification of a query fingerprint requires matching its minutiae against every minutiae of all the fingerprints of the database. The state-of-the-art matching algorithms are costly, from a computational point of view, and inefficient on large datasets. In this work, we include faster methods to accelerating DMC (the most accurate fingerprint matching algorithm based only on minutiae). In particular, we translate into C++ the functions of the algorithm which represent the most costly tasks of the code; we create a library with the new code and we link the library to the original C# code using a CLR Class Library project by means of a C++/CLI Wrapper. Our solution re-implements critical functions, e.g., the bit population count including a fast C++ PopCount library and the use of the squared Euclidean distance for calculating the minutiae neighborhood. The experimental results show a significant reduction of the execution time in the optimized functions of the matching algorithm. Finally, a novel approach to improve the matching algorithm, considering cache memory blocking and parallel data processing, is presented as future work.
    • URI
      https://hdl.handle.net/10630/16189
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Caepia18-AJSanchez.pdf (952.4Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA