Enhancing online knowledge graph population with semantic knowledge

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Capítol de llibre

Data publicació

Editor

Springer

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Knowledge Graphs (KG) are becoming essential to organize, represent and store the world’s knowledge, but they still rely heavily on humanly-curated structured data. Information Extraction (IE) tasks, like disambiguating entities and relations from unstructured text, are key to automate KG population. However, Natural Language Processing (NLP) methods alone can not guarantee the validity of the facts extracted and may introduce erroneous information into the KG. This work presents an end-to-end system that combines Semantic Knowledge and Validation techniques with NLP methods, to provide KG population of novel facts from clustered news events. The contributions of this paper are two-fold: First, we present a novel method for including entity-type knowledge into a Relation Extraction model, improving F1-Score over the baseline with TACRED and TypeRE datasets. Second, we increase the precision by adding data validation on top of the Relation Extraction method. These two contributions are combined in an industrial pipeline for automatic KG population over aggregated news, demonstrating increased data validity when performing online learning from unstructured web data. Finally, the TypeRE and AggregatedNewsRE datasets build to benchmark these results are also published to foster future research in this field.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Fernàndez, D. [et al.]. Enhancing online knowledge graph population with semantic knowledge. A: "The Semantic Web – ISWC: 2020 19th International Semantic Web Conference: Athens, Greece: November 2–6, 2020: Proceedings, Part I". Berlín: Springer, 2020, p. 183-200.

Ajut

Forma part

Dipòsit legal

ISBN

978-3-030-62419-4

ISSN

Altres identificadors

Referències