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Abstract. We introduce a 3D reconstruction technique based on near-
light photometric stereo, where lighting calibration is achieved on-the-
fly from a rough geometric knowledge obtained, e.g., by structure-from-
motion. From this coarse geometry, the proposed graduated optimisation
setup estimates all light source parameters (position, intensity, orien-
tation, and anisotropy factor of each source), which can then be used
within a calibrated photometric stereo algorithm. A series of real-world
experiments is conducted, which validates the interest of the proposed
approach.

1 Introduction

Photometric stereo (PS) is a technique which provides 3D and appearance esti-
mates of objects from a single view and multiple light sources. The last decade
has seen major improvements in the technique and has made it an effective one
for 3D digitisation. However, the quality of the results of calibrated PS remains
highly dependent on the accuracy of illumination calibration. Therefore, uncal-
ibrated PS, which relaxes the need for calibration, has long been identified as a
promising alternative [7]. Unfortunately, assuming a linear illumination model
(directional and uniform lighting), the solution can be recovered only up to a
generalized bas-relief (GBR) transformation [22], therefore, an additional prior
must be introduced [4]. Extensions of this framework to more general (spatially
varying) linear illumination models have been proposed [6,12], yet they still
heavily rely on hand-crafted priors for resolving the underlying ambiguities.

In contrast, nonlinear illumination models (where the incident illumination
in each 3D point depends nonlinearly on the unknown geometry) are not prone to
GBR-like ambiguities [13]. In addition, such models are particularly well suited
for describing light-emitting diodes (LEDs), which represent common, versatile,
inexpensive, and easy-to-use light sources. Thus, near-light PS represents a very
practical 3D reconstruction method, for which efficient algorithmic solutions
based on variational methods [14] or deep learning exist [9]. Nonetheless, care-
ful calibration of the LED parameters (or at least some of them [10,16]) must
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be carried out for such efficient methods to be employed. This seriously limits
the interest of the approach, as near-light calibration remains cumbersome in
practice [19,20].

Therefore, the goal of this paper is to provide an easy-to-use method for pre-
cise LED calibration from a relatively coarse geometry obtained by any method
providing this information. Examples of plug-and-play packages for obtaining
such a rough proxy include the structure-from-motion (SfM) / multiview stereo
(MVS) softwares Meshroom [5] and Colmap [17,18], or the recent deep learning-
based monocular geometry estimators [1,21]. If all the parameters of these com-
plex light sources (position, intensity, principal direction and angular anisotropy
– which can be colour-dependent) could be accurately deduced from this rough
geometry, then self-calibration would become possible for near-light PS, enabling
a simple and very accurate 3D reconstruction (see Figure 1).

In spirit, our method resembles the very recent one [2], where MVS is com-
bined with PS within an uncalibrated multiview, near-light framework. Al-
though yielding state-of-the-art results, the latter method remains computa-
tionally heavy, as it involves generic neural networks for modelling the surface
geometry and reflectance, and it jointly solves MVS and PS. On the contrary, we
rather opt for computational efficiency and modularity, by focusing on PS-based
refinement of a geometric approximation. This way, we conserve network-free
representations which allow resorting to a sequence of simple optimisation pro-
cedures and explicit models.

The recovery of light source parameters is actually conditioned by the scale
of the scene, including the object and light sources. When the light source is
sufficiently far away compared to the size of the object under scrutiny, then a
directional luminous flux will in general be a very good approximation for the
LED illumination in that case. At a somewhat shorter scale, a point light source
spreading light radially with an inverse-of-squared-distance fall-off, becomes a
much better estimate. At an even shorter scale, anisotropy plays its part: one
must also account for the angular attenuation as we deviate from the principal il-
lumination direction of the LED. Neglecting such nonlinearities in the PS model
would skew the reconstructed geometry since darker patterns due to anisotropy
would be falsely interpreted as some important curvature of the scene. The main
other source of limitation in light source parameters recovery is the precision at
which the initial geometry is known: a model that is too smooth or too noisy will
also impede the estimation of sensitive parameters, such as principal direction or
anisotropy. Considering these two features (scale-dependency and sensitivity) en-
courages us to design a graduated and robust optimisation procedure. The code
can be accessed here : https://github.com/BenjaminCoupry/LED-getter

Contributions. In this paper, we show that a coarse to good knowledge of
the geometry of an object allows us to recover important information about the
LEDs and then use the full power of PS to obtain a much more precise recon-
struction of the object under scrutiny. We deal with the complexity of the pa-
rameters space in several steps, from the coarse approximation of light sources as

https://github.com/BenjaminCoupry/LED-getter
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directional to the recovery of the most important near-field anisotropic punctual
sources parameters, by progressively incorporating scale information. Section 2
introduces our forward model, which we invert by introducing complexity in the
model step by step in Section 3 to self-calibrate the LEDs using a geometric
approximate knowledge of the scene. Our approach is evaluated in Section 4,
before our conclusions are drawn in Section 5.

Fig. 1: Overview of the proposed framework. From a set of PS images acquired
using LEDs at very short distance (top row) and a rough geometric knowledge
(MVS normal map displayed in second and third rows, left), we automatically
estimate all the light source parameters in a progressive manner (bottom row),
enabling the subsequent use of self-calibrated PS (second and third row, right).
The results of this figure will be discussed later in the article.
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2 From PS to Coloured Near-light PS

Photometric Stereo. In the standard setup, N photographs of a surface S are
taken from the same angle of view, but under varying illumination. The pictured
surface is assumed to be Lambertian i.e., it reflects the light diffusely and the
reflectance is (up to a multiplicative constant) given by the albedo ρ ∈ [0, 1].
When theseN illuminations are directional, thus characterized by a set of vectors
si ∈ R3, i ∈ {1, . . . , N}, the measured brightness at pixel p = p(x), which is the
projection of surface point x onto the camera image plane, is given as:

Ii(p) = ρ(x)
{
n(x) · si

}
+
, i = 1 . . . N. (2.1)

where n(x) is the surface normal, and {x}+ = max{x, 0} encodes self-shadows.
Calibrated PS assumes that lighting is known, both in terms of direction and

intensity. Under this assumption, with N ≥ 3 illuminations not all coplanar,
System (2.1) admits a unique solution m(x), where m(x) = ρ(x)n(x), from
which it is easy to deduce the albedo and the normal at x. However, such a
simple approach breaks in many real-world scenarios, when actual illumination
cannot be fully characterized by calibrating the illumination vectors si ∈ R3.

Near-light Models. Conventional photometric stereo assumes that the inci-
dent luminous fluxes are parallel and uniform (far away sources), which is difficult
to guarantee. In such a model, illumination does not depend on the 3D point x
on the surface, but only on a direction and an intensity:

si(x) = si = φi ti, (2.2)

with ti ∈ S2 a unit vector representing the direction of the source, and φi > 0 its
intensity. Some works have extended the classic PS pipeline to general spatially-
varying illumination models si(x) [12,15], yet they strongly rely on hand-crafted
priors. An alternative is to resort to a parametric model making explicit the non-
uniform nature of lighting (which is clearly visible in the images of Figure 1).

A very common such parametric model, encountered in the near-field con-
text, is that of punctual light sources. Therein, each source is characterized by a
position qi ∈ R3. It spreads light radially, and the incident illumination direction

in x is thus explicitly given by the unit vector qi−x
∥qi−x∥ . Besides, the source inten-

sity φi is attenuated with the distance travelled according to an inverse-square
fall-off law, yielding the following nonlinear illumination model:

si(x) = φi qi − x

∥qi − x∥3
, (2.3)

which explicitly depends on the coordinates of x. Since these coordinates are
the unknowns of the 3D reconstruction problem, solving PS becomes much more
arduous than solving a linear system as above. Nonetheless, let us stress that
when qi moves far away from the scene (far field), the punctual model behaves
like a directional one, provided that some intensity adjustments are made.
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Given their low cost and ease of use, LEDs are frequently encountered in ac-
tive illumination applications. However, when used in a near-field setting, LEDs
exhibit an anisotropic behaviour, with an angular intensity decay off a so-called
principal direction [11]. A common model for this anisotropic behaviour is that
of imperfect Lambertian light source, which combines point light illumination
with cosine-power angular fall-off:

si(x) = φi (d
i · σi(x))µ

i

∥qi − x∥2
σi(x), (2.4)

where the light source is characterized by an intensity φi, a position qi from

which is deduced the incident direction σi(x) = qi−x
∥qi−x∥ , a principal direction di,

and a parameter of anisotropy µi ∈ R+. When µi = 0, this anisotropic model
becomes isotropic, and a perfectly Lambertian light source corresponds to µi = 1.

Colour. So far, we have considered monochromatic sources, however real-world
ones have a continuous spectrum, which affects both their intensity and their
anisotropy:

si(x, λ) = φi(λ)
(di · σi(x))µ

i(λ)

∥qi − x∥2
σi(x). (2.5)

Similarly, the scene reflectance ρ also becomes wavelength-dependent, and the
proportionality coefficient absorbed in it in (2.1) becomes a wavelength-dependent
sensor response rc : V → R+, with V the visible spectrum, where the subset c
refers to the colour channel (R, G and B denote the red, green and blue channels,
respectively).

In the general case, the measured brightness in each channel is then obtained
by integrating (2.1) over this spectrum:

Iic(p) =

∫
V
rc(λ) ρ(x, λ)

{
n(x) · si(x, λ)

}
+
dλ, i = 1 . . . N. (2.6)

Without loss of generality, we will consider in the following that the N LEDs
are identically manufactured. It follows that they have the same parameter of
anisotropy µ(λ), but they differ in their emission spectrum φi(λ), their location
qi and their principal direction di.

Assuming that the coloured filter for each channel can be assimilated to a
Dirac function, i.e. rc = δλc

, then (2.6) simplifies to:

Iic(p) = ρc(x)φ
i
c

(di · σi(x))µc

∥qi − x∥2
{
n(x) · σi(x)

}
+
, i = 1 . . . N. (2.7)

with ρc(x) = ρ(x, λc), φ
i
c = φi(λc) and µc = µ(λc).

Of course, none of the three coloured filters that characterize the Bayer pat-
tern is perfectly monochromatic. Nevertheless, Model (2.7) seems physically re-
alistic: the luminous flux emitted by a LED in each channel is characterized by
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a maximum intensity φi
c in the main direction depending on the channel, as well

as the anisotropy parameter µc. We therefore assume neither that the emission
spectrum is white, nor that it is independent of the colour channel. In fact, we
have observed that the apparent colour of LEDs depends on the point of view.
In addition, we observed that with the LEDs we used, the light emitted in the
principal direction is white. Therefore, we simplify the model by replacing φi

c

by φi.

Light Sources and Scale. The above light source models involve a shift in the
level of approximation from the scale of the acquisition setup. This scale, here,
is the spatial extent of the measuring device, in ratio to the size of the observed
object, and implies different models. Indeed, the anisotropic LED model tends to
the point source model when scale increases, and the point source model tends
to the directional one, when scale increases. This will be used in the next section
to build an optimisation setup to recover all the light source parameters, given
a coarse approximation of surface geometry.

3 A Graduated Optimisation Approach

The General Model. We have N RGB images Iic, i ∈ {1, . . . , N}, c ∈
{R,G,B}, from the same viewpoint, with N different light sources. As seen
above, under the assumptions of Lambertian scene and identical LEDs, the im-
age formation model is provided by:

Iic(p) = ρc(x)
{
n(x) · si(x; θi, µc)

}
+

(3.1)

where si(x; θi, µc) is the illumination vector corresponding to (2.7). It depends on
the surface point x, as well as on a per-LED set of parameters θi comprising the
position qi, the principal direction di and the intensity φi, and on the spectral
anisotropy parameters µ = (µR, µG, µB) supposedly common to all sources.

We assume that we have some coarse knowledge of the geometry of the
surface, represented by a discrete set of points x ∈ D over which we have
the RGB measurements Iic(p(x)) and associated estimates of the normal n(x)
and 3D coordinates x. We wish to recover the surface colour albedo ρ(x) =
(ρR(x), ρG(x), ρB(x)) at these points, along with the source parameters θ =
(θ1, . . . , θN ) and anisotropy parameters µ = (µR, µG, µB), by minimizing the
discrepancy between both sides of (3.1) in the sense of the classical Huber loss:

Hε(a) =

{
1
2 a

2, if |a| < ε,

ε
(
|a| − 1

2ε
)
, otherwise,

over the set D of available measurements. Our search space is therefore R3|D| ×
R3N ×S2N ×RN

+ ×R3
+. Here, R3|D| is the albedo state space, R3N is the position

state space, S2N is the principal direction state space, RN
+ is the intensity state

space and R3
+ is the µ-state space. This is a rather complex state space for a

non-convex problem. To tackle it, we gradually refine the light source model,
going from the coarse, directional one to anisotropic point light LEDs.
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Step 1: coarse directional estimation. In that step, we assume the light
sources are directional, following Model (2.2). Here each source is characterized
by a vector si0 ∈ R3, whose direction will be denoted ti ∈ S2 and its intensity
φi
0. The optimisation of the cost function

F1(ρ, s
1
0, . . . , s

N
0 ) =

∑
i,c,x

Hε

(
Iic(p(x))− ρc(x)

{
n(x) · si0

}
+

)
(3.2)

is carried out by the LBFGS quasi-Newton method. The optimal s10, . . . s
N
0 are

decomposed as (φ1
0, t

1), . . . , (φN
0 , tN ), and ρ1 serves as a first albedo estimation.

Step 2: coarse punctual estimation. In this step, we move from far-field to
isotropic near-field by “moving” the light sources from infinity to a sphere of
unknown radius d. We assume that all the light sources point approximately to
the centre cS of the scene, and we will estimate d such that it is consistent with
the previous intensity estimates φi

0. That is, each source will be represented by
an isotropic punctual one with position cS+d ti and intensity φi

0 d
2 (consistently

with the inverse-square law (2.3)):

si1(x) = φi
0 d

2 cS + d ti − x

∥cS + d ti − x∥3
. (3.3)

The albedos and the distance are optimized by minimizing

F2(ρ, d) =
∑
i,c,x

Hε

(
Iic(p(x))− ρc(x)

{
n(x) · si1(x)

}
+

)
(3.4)

starting from ρ1 and an (empirical) d1 estimate, here too using LBFGS. The op-
timisation result provides a new estimate ρ2 of the albedos, and some nonlinear
average distance d2 of our light sources to the centre of the scene.

Step 3: point source model refinement. We now have initial estimates of
the point source positions as qi

0 = cS+d2 t
i, intensity estimates φi

2 = φi
0 d

2
2, and

a refined estimate ρ2 of the albedos. Next we “free” the positions and intensities,
i.e. we use the full point source model (2.3) and optimize

F3(ρ, φ
1,q1, . . . φN ,qN ) =

∑
i,c,x

Hε

(
Iic(p(x))− ρc(x)

{
n(x) · si(x)

}
+

)
(3.5)

using LBFGS, to obtain refined values ρ3 and qi
3, φ

i
3, i = 1 . . . N .

Step 4: estimation of the LED parameters. LED anisotropies eventually
come into play in sufficiently near-field situations. In that case, we can use the
full LED model (2.4) to recover the full set of parameters θ = (θ1, . . . , θN ) and
µ = (µR, µG, µB) mentioned at the beginning of this section, optimizing:

F4(ρ,θ,µ) =
∑
i,c,x

Hε

(
Iic(p)− ρc(x)

{
n(x) · si(x, θi, µc)

}
+

)
. (3.6)
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The albedos are initialized using ρ3. The per-LED parameters θi are initialized
using the previously estimated positions qi

3 and intensities φi
3, and rough esti-

mates di
3 =

qi
3−cS

∥qi
3−cS∥ of their principal directions. The anisotropy parameters are

initialized using a small nonzero value µc,0 = δ > 0 (starting with a nonzero
value provides a better starting gradient). From the technical side, all the opti-
misation problems arising in the different steps of our method are solved on a
GPU using JAX and OPTAX libraries, leveraging automatic differentiation for
efficient gradient-based optimisation. While images of high resolution could be
handled with stochastic approaches on pixels [3], we empirically observed that
down-sampling images during light estimation has a negligible impact on results
quality, hence we choose this alternative for very large images.

This computational framework ensures scalability and precision in solving
the complex inverse problems associated with photometric and geometric re-
construction. Figure 2 illustrates the evolution of the loss function across these
four different steps. As can be seen, each illumination refinement yields a better
expressivity of the model, characterized by a drop in the loss function.

Fig. 2: Loss evolution across the four
different steps, from the coarsest to
the finest illumination model, on the
“Spheres” and “Chauvet” datasets
presented in Section 4.

Step 5: calibrated PS. Once all the light source parameters are computed,
we are back in a calibrated PS setup, where we must invert Model (3.1) in terms
of albedo and geometry (represented by x and n(x)), knowing θ and µ. For
this task, we can for instance keep the same objective function as in (3.6), or
resort to more evolved algorithms such as variational [14] or deep [9] solvers.
Let us remark that, although for LED calibration we explicitly relied on the
Lambertian assumption (at least up to sparse deviations, thanks to Huber’s loss),
employing deep learning-based solutions would allow us to consider much more
reflective surfaces. In practice, one could thus select a subset D of “Lambertian-
like” points for LED calibration, before switching to the whole set of visible
points and fancy algorithms for the 3D reconstruction itself. In the preliminary
experiments depicted in the next section, we however sticked to diffuse surfaces
and the proposed inverse problem approach.
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4 Results and Discussion

Experimental Setup. Our experimental setup comprises three real-world case
studies. The images are captured using an RTI dome (reflectance transformation
imaging) equipped with 105 LEDs placed on a hemisphere around the scene
center. The first case involves a scene consisting of five spheres, see Figure 3. The
scene geometry is perfectly known from projective geometry principles. In this
case, we can observe that the light source environment is perfectly reconstructed.

Fig. 3: Top: three (out of N = 105) pictures of the first scene. Bottom, left:
estimated light source parameters, from the coarsest to the finest model. Bottom,
right: estimated spectral anisotropy parameters.

The second case focuses on a segment of the “Panneau des Chevaux” ex-
tracted from the wall of the Chauvet cave. This segment occupies the entire
image plane and is characterized by a relatively planar surface. To obtain our
geometric proxy, we used the Meshroom software, which is based on SfM and
MVS. The reconstruction of the illumination environment, shown in Fig. 1, is
consistent with the previous one. Lastly, we consider a decimetric Cypriot ce-
ramic head scanned under the same conditions.

Discussion on the Lighting Estimation Results. In typical scenarios,
spheres exhibit a wide range of surface normals, which facilitates robust esti-
mation at all steps of the light sources optimisation process. However, in the
case of the Chauvet dataset, the curvature of the scene along the x-axis is insuf-
ficient, resulting in a predominance of coplanar normals. This lack of variation
hinders the accurate estimation of directional lighting. Nonetheless, the strongly
nonlinear illumination patterns (inverse square fall-off and anisotropy) produced
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by LEDs on flat surfaces provide sufficient information to accurately determine
both the position and the anisotropy of the LEDs. This is a particularly advan-
tageous property, as cave walls are often characterized by planar geometry.

Additionally, as observed in the acquired images, the LEDs do not emit with
uniform chromaticity in all directions. We note that it is possible to recover this
directional chromatic anisotropy (bottom right image in Figure 3). This capabil-
ity is especially relevant for applications involving colour-sensitive analysis, as it
enables the characterisation and correction of non-uniform illumination effects.

These observations underscore the feasibility of leveraging LED-based illumi-
nation systems for reliable parameters estimation in environments with minimal
geometric complexity, such as caves. They also highlight the importance of ac-
counting for directional chromatic anisotropy in such systems to ensure accurate
photometric measurements. Nonetheless, we observed in some cases, specifically
with distant lights or small objects, an overfitting to the model resulting in
degenerate light parameters (for example, random principal direction with null
anisotropy factor). Although this can be problematic if the main interest lies in
estimating the properties of the light source itself, this does not decrease the
3D reconstruction quality, as light is always evaluated on the surface of interest,
where the lighting condition is optimized by construction.

Discussion on the 3D Reconstruction Results. As can be seen by compar-
ing our results with MVS in Figure 1, the proposed method offers a markedly
improved separation of colour and texture information, addressing a key chal-
lenge in the accurate reconstruction of surface reflectance properties. In partic-
ular, our technique reveals the very fine engravings surrounding these painted
horses of the Chauvet cave. Furthermore, in terms of spatial resolution, the
method significantly outperforms MVS, which is typically limited by its reliance
on correspondences between multiple viewpoints, while the proposed approach
leverages pixel-wise normal estimation of single view reconstruction.

In addition, by relying on an explicit physics-based illumination model, our
approach largely reduces low-frequency bias, in comparison with alternative ap-
proaches using an implicit model. This is illustrated in Figure 4, where we qual-
itatively and quantitatively compare our 3D reconstruction with that obtained
using a state-of-the-art Transformers-based approach [8], on the “Panneau des
Chevaux” dataset. Therein, we used a 3D scanner as ground truth to evaluate the
reconstructions. Although this mode of acquisition does not capture fine surface
details, it provides highly reliable low-frequency geometry of the object. Conse-
quently, a relatively high mean angular error (MAE) may partially be indicative
of missing fine details in the ground truth data, in addition to the inaccuracies
in the method being tested. Still, low-frequency errors are clearly visible in the
state-of-the-art learning-based method.

This is further confirmed in the experiment on the Cypriot ceramic head, dis-
played in Figure 5. Again, low-frequency errors are much reduced, in comparison
with the state-of-the-art method.
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Fig. 4: Top: “ground truth” normals from the 3D scanner, and normals obtained
by SDM [8]. Bottom: angular error map for our method (mean: 15.3°) and SDM
(mean: 17.8°). Low-frequencies are much better reconstructed with our proposed
method.

Fig. 5: Quantitative evaluation on the Cypriot ceramic head. From left to right:
ground truth scanner normals, angular errors with our method (average 9.9°),
and SDM angular errors (11.3°).
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5 Conclusion and Perspectives

In this work, we have presented a novel uncalibrated near-light photometric
stereo method, where the parameters of a physics-based illumination model for
LEDs are estimated on-the-fly from a geometric proxy obtained, e.g., by MVS.
A graduated optimisation procedure has been developed, which progressively
refines the illumination model in a scale-aware manner. Experiments on three
real datasets have shown that by combining good chromatic separation, low-
frequency accuracy, and superior resolution, the method represents a notable
advancement over existing techniques, offering a comprehensive solution for high-
quality 3D digitisation.

On the other hand, our procedure for calibrating the illumination parameters
still relies on the Lambertian model, despite the location of specularities is di-
rectly correlated with the sources parameters. In future work, we plan to further
refine our approach in this direction. Moreover, the improvements obtained by
the method suggest to use it in a bootstrapping process. Finally, a theoretical
study of the convergence properties of our approach remains to be carried out.

Acknowledgements – We are grateful to the teams of the Chauvet cave and of
the Saint-Raymond museum for allowing us to work with objects and artworks
from their collections and sites, greatly contributing to this study.
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