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Abstract

We study the problem of finding a copy of a specific induced subgraph on inhomogeneous
random graphs with infinite variance power-law degrees. We provide a fast algorithm that
finds a copy of any connected graph H on a fixed number of k vertices as an induced subgraph
in a random graph with n vertices. By exploiting the scale-free graph structure, the algorithm
runs in O(nk) time for small values of k. As a corollary, this shows that the induced subgraph
isomorphism problem can be solved in time O(nk) for the inhomogeneous random graph. We
test our algorithm on several real-world data sets.

1 Introduction

The induced subgraph isomorphism problem asks whether a large graph G contains a connected
graph H as an induced subgraph. When k is allowed to grow with the graph size n, this problem is
NP-hard in general. For example, k-clique and k induced cycle, special cases of H, are known to be
NP-hard . For fixed k, this problem can be solved in polynomial time O(n*) by searching for
H on all possible combinations of k vertices. Several randomized and non-randomized algorithms
exist to improve upon this trivial way of finding H .

A second problem we investigate is how to find a subgraph, when we know it exists, more
efficiently than the trivial O(nk) algorithm.

On real-world networks, many algorithms were observed to run much faster than predicted
by the worst-case running time of algorithms. This may be ascribed to some of the properties
that many real-world networks share [4], such as the power-law degree distribution found in many
networks . One way of exploiting these power-law degree distributions is to design
algorithms that work well on random graphs with power-law degree distributions. For example,
finding the largest clique in a network is NP-complete for general networks [19]. However, in ran-
dom graph models such as the Erdés-Rényi random graph and the inhomogeneous random graph,
their specific structures can be exploited to design fixed parameter tractable (FPT) algorithms
that efficiently find a clique of size k or the largest independent set .

In this paper, we study algorithms that are designed to efficiently find subgraphs in the in-
homogeneous random graph, a random graph model that can generate graphs with a power-law
degree distribution [2}[3|[5,/6}[2325]. The inhomogeneous random graph has a densely connected
core containing many cliques, consisting of vertices with degrees y/nlog(n) and larger. In this
densely connected core, the probability of an edge being present is close to one, so that it contains
many complete graphs . This observation was exploited in to efficiently determine whether
a clique of size k occurs as a subgraph in an inhomogeneous random graph. When searching for
induced subgraphs however, some edges are required not to be present. Therefore, searching for



induced subgraphs in the entire core is not efficient. We show that a connected subgraph H can
be found as an induced subgraph by scanning only vertices that are on the boundary of the core:
vertices with degrees proportional to /n.

We present an algorithm that first selects the set of vertices with degrees proportional to 1/n,
and then randomly searches for H as an induced subgraph on a subset of k of those vertices.
The first algorithm we present does not depend on the specific structure of H. For general
sparse graphs, the best known algorithms to solve subgraph isomorphism on 3 or 4 vertices run
in O(n'4!) or O(n!®!) time with high probability [28]. For small values of k, our algorithm finds
the desired subgraph on k nodes in linear time with high probability on inhomogeneous random
graphs. However, the graph size needs to be very large for our algorithm to perform well. We
therefore present a second algorithm that again selects the vertices with degrees proportional to
v/n, and then searches for induced subgraph H in a more efficient way. This algorithm has the
same performance guarantee as our first algorithm, but performs much better in simulations.

We test our algorithm on large inhomogeneous random graphs, where it indeed efficiently finds
induced subgraphs. We also test our algorithm on real-world network data with power-law degrees.
There our algorithm does not perform well, probably due to the fact that the densely connected
core of some real-world networks may not be the vertices of degrees at least proportional to \/n.
We then show that a slight modification of our algorithm that looks for induced subgraphs on
vertices of degrees proportional to n? for some other value of v performs better on real-world
networks, where the value of vy depends on the specific network.

Notation. We say that a sequence of events (€,),>1 happens with high probability (w.h.p.)
if lim, 0o P(€,) = 1. Furthermore, we write f(n) = o(g(n)) if lim, o f(n)/g(n) = 0, and
f(n) = O(g(n)) if |f(n)|/g(n) is uniformly bounded, where (g(n)),>1 is nonnegative. Similarly,
if limsup,,_, o [f(n)] /g(n) > 0, we say that f(n) = Q(g(n)) for nonnegative (g(n))n>1. We write
F(n) = B(g(n) if f(n) = O(g(n)) as well as f(n) = (g(n)).

1.1 Model

As a random graph null model, we use the inhomogeneous random graph or hidden variable
model [2,[3}/5}6,23L|25]. Every vertex is equipped with a weight w. We assume that the weights
are i.i.d. samples from the power-law distribution

P(w>k)=Ck'" " (1.1)

for some constant C' and for 7 € (2,3). Two vertices with weights w and w’ are connected with
probability

un

where ;1 denotes the mean value of the power-law distribution (1.1)). Choosing the connection
probability in this way ensures that the expected degree of a vertex with weight w is w. We
denote the degree of vertex 7 in the inhomogeneous random graph by D; and its weight by w;.

p(w,w') = min <ww/,1) , (1.2)

1.2 Algorithms

We now describe two randomized algorithms that determine whether a connected graph H is an
induced subgraph in an inhomogeneous random graph and finds the location of such a subgraph
if it exists. Algorithm [1] selects the vertices in the inhomogeneous random graph that are on the
boundary of the core of the graph: vertices with degrees slightly below ,/un. Then, the algorithm
randomly divides these vertices into sets of k vertices. If one of these sets contains H as an induced
subgraph, the algorithm terminates and returns the location of H. If this is not the case, then
the algorithm fails. In the next section, we show that for & small enough, the probability that the
algorithm fails is small. This means that H is present as an induced subgraph on vertices that are
on the boundary of the core with high probability.



Algorithm [1]is similar to the algorithm in [12] designed to find cliques in random graphs. The
major difference is that the algorithm to find cliques looks for cliques on all vertices with degrees
larger than +/fiun for some function f;. This algorithm is not efficient for detecting subgraphs
other than cliques, since vertices with high degrees will be connected with probability close to one.

Algorithm 1: Finding induced subgraph H (random search)

Input : H = (VH’EH)v G= (VGVEG)v My fi= fl(n)7 Ja= f2(n)
Output: Location of H in G or fail.
Define n = |V, I,, = [/ fipn, /fapn], set k = |Vy| and V' = ().
for i € V do

‘ if D;el, then V' =V'Uj;
end
Divide the vertices in V’ randomly into [|V'| /k] sets S1,...,S|jv/|/k]-
for j=1,...,[|V’| /k| do

‘ if H is an induced subgraph on S; then return location of H;
end
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The following theorem gives a bound for the performance of Algorithm [I] for small values of k.

Theorem 1. Choose fi = fi(n) > 1/log(n) and fa(n) such that for some a < 1,b <1, fi1 < afs
and fo < b < 1 for all n. Let k < log"?(n). Then, with high probability, Algom'thm detects
induced subgraph H on k vertices in an inhomogeneous random graph with n vertices and weights

distributed as in (1.1)) in time O(nk).

Thus, for constant values of k, Algorithm [I] finds an instance of H in linear time.

A problem with parameter k is called fixed parameter tractable (FPT) if it can be solved
in f(k)n®®) time for some function f(k), and it is called typical FPT (typFPT) if it can be
solved in f(k)n®M) with high probability [9]. As a corollary of Theorem we obtain that the
induced subgraph problem on the inhomogeneous random graph is in typFPT for any subgraph
H, similarly to the k-clique problem on inhomogeneous random graphs [12].

Corollary 2. The induced subgraph problem on the inhomogeneous random graph is in typFPT.

In theory Algorithm [1] detects any motif on k vertices in linear time for small k. However, this
only holds for large values of n, which can be understood as follows. In Lemma [6 we show that
[V'| = ©(n3=7)/2), thus tending to infinity as n grows large. However, when n = 107 and 7 = 2.5,
this means that the size of the set V' is only proportional to 107> = 56 vertices. Therefore, the
number of sets S; constructed in Algorithmis also small. Even though the probability of finding
motif H in any such set is proportional to a constant, this constant may be small, so that for finite
n the algorithm almost always fails. Thus, for Algorithm [I] to work, n needs to be large enough
so that n®~7)/2 is large as well.

The algorithm can be significantly improved by changing the search for H on vertices in set
V’. In Algorithm [2| we propose a search for motif H similar to the Kashtan motif sampling
algorithm [20]. Rather than sampling k vertices randomly, it samples one vertex randomly, and
then randomly increases the set S by adding vertices in its neighborhood. This already guarantees
the vertices in list S; to be connected, making it more likely for them to form a specific connected
motif together. In particular, we expand the list S; in such a way that the vertices in S; are
guaranteed to form a spanning tree of H as a subgraph. This is ensured by choosing the list
TH that specifies at which vertex in S; we expand S; by adding a new vertex. For example,
if k = 4 and we set TH = [1,2,3] we first add an edge to the first vertex, then we look for a
random neighbor of the previously added vertex, and then we add a random neighbor of the third
added vertex. Thus, setting T = [1,2, 3] ensures that the set S; contains a path of length three,
whereas setting 77 = [1, 1, 1] ensures that the set S; contains a star-shaped subgraph. Depending
on which subgraph H we are looking for, we can define T in such a way that we ensure that the
set S; at least contains a spanning tree of motif H in Step 6 of the algorithm.



The selection on the degrees ensures that the degrees are sufficiently high so that probability
of finding such a connected set on k vertices is high, as well as that the degrees are sufficiently low
to ensure that we do not only find complete graphs because of the densely connected core of the
inhomogeneous random graph. The probability that Algorithm [2|indeed finds the desired motif H
in any check is of constant order of magnitude, similar to Algorithm[I} Therefore, the performance
guarantee of both algorithms is similar. However, for several synthetic and real-world data sets, we
show in Section [3] that Algorithm [2] performs much better, since for finite n, k& connected vertices
are more likely to form a motif than k£ randomly chosen vertices.

Algorithm 2: Finding induced subgraph H (neighborhood search)

Input :H7G:(‘/7E)7M7 fl:fl(n)a f2:f2(n)7s'
Output: Location of H in G or fail.

1 Define n = |V|, I,, = [\/fipn, v/ faun] and set V' = 0.
2 fori €V do

3 ‘ if D; eI, then V' =V'Uj;

4 end

5 Let G’ be the induced subgraph of G on vertices V.
6 Set T consistently with motif H .

7 for j=1,...,s do

8 Pick a random vertex v € V' and set S; = {v}.

9 while |S;| # k do

10 Pick a random v’ € Ng/ (S;[TH[j]]) : v' ¢ S;
11 Add v’ to S;.

12 end

13 if H is an induced subgraph on S; then return location of H;
14 end

The following theorem shows that indeed Algorithm [2| has similar performance guarantees as
Algorithm

Theorem 3. Choose f1 = fi(n) > 1/log(n) and f1 < fo < 1. Choose s = Q(n®) for some
0 < a <1, such that s < n/k. Then, Algom'thm@ detects induced subgraph H on k < log'/®(n)

vertices on an inhomogeneous random graph with n vertices and weights distributed as in (1.1) in
time O(nk) with high probability.

The proofs of Theorem [I] and 3] rely on the fact that for small k, any subgraph on k vertices is
present in G’ with high probability. This means that after the degree selection step of Algorithms
and [2| for small k, any motif finding algorithm can be used to find motif H on the remaining
graph G’, such as the Grochow-Kellis algorithm [14], the MAvisto algorithm [26] or the MODA
algorithm [24]. In the proofs of Theorem 1| and |3} we show that G’ has ©(n(3~7)/2) vertices with
high probability. Thus, the degree selection step reduces the problem of finding a motif H on n
vertices to finding a motif on a graph with ©(n(3~7)/2) vertices, significantly reducing the running
time of the algorithms.

2 Proof of Theorems [ and 3

We prove Theorem [I] using two lemmas. The first lemma relates the degrees of the vertices to
their weights. The connection probabilities in the inhomogeneous random graph depend on the
weights of the vertices. In Algorithm [I} we select vertices based on their degrees instead of their
unknown weights. The following lemma shows that the weights of the vertices in V’ are close to
their degrees.



Lemma 4 (Degrees and weights). Fiz ¢ > 0, and define J, = [(1 — &)v/fiun, (1 + &)/ faun).
Then, for some K > 0,

P(RieV iw ¢J,) < Knexp(—EQ\/Mmin (1\/_716, 1\/_{726)/2) (2.1)

Proof. Fix a vertex i € V. Then,

CP(Di€l, | w < (1—e)/fiun)
P(wi<(1—5)\/m’ DZ’EI”) - P(wi < (1—e)Vfipm)

< P (DZ- >/ fipn | w, = (1 - 5)\/f1/¢n)
- 1-C((1 =)/ fipn)'="
< K)P (Dz > £/ fiun ‘ w; = (1 —6)\/f1,un> , (2.2)

for some K; > 0.

Here the first inequality follows because the probability that a vertex with weight w; has degree
at least v/ fiun is larger than the probability that a vertex of weight wo has degree at least /fiun
when w; > ws. Conditionally on the weights, D; is the sum of n — 1 independent indicators
indicating the presence of an edge between vertex ¢ and the other vertices and that E[D;] = w;.
Therefore, by the Chernoff bound

P(D; > w;i(1+6)) < exp (— 6%w;/2). (2.3)
Therefore, choosing 6 = ¢/(1 — ) yields
e2v/fipn
P (Di >/ fipn |w; = (1— 5)\/f1un) < exp ( - 2(1fl'Z)> (14 0(1)). (2.4)
Combining this with (2.2]) and taking the union bound over all vertices then results in
2

P (3@' :D; € Injyw; < (1— 5)\/f1un) < Konexp ( — ﬁ\/ﬁun), (2.5)

for some Ky > 0. Similarly,

2

P (Eli :D; € Ly,w; > (14 5)\/f2un) < K3nexp ( — ﬁ\/fgun), (2.6)

for some K3 > 0, which proves the lemma. O

Lemma 5 (Weights and degrees). Fiz e > 0, sufficiently small so that J, = [(1 + &)v/fipn, (1 —
e)V fapun] is a non-empty interval. Then, for some K > 0,

ViV )/2). (2.7)

IP’(H': LeJni V’)<K (— 2 /mmi ( ,
7w i¢ < Knexp £°/pn min - l+e

Proof. Fix a vertex ¢ with w; € T Then,
P (Di <A fipn|w; € jn) <P (DZ- <A/ fipn | w; = (1 +€)\/f1;m) ) (2.8)
Similarly to (2.4)),

2
P (Di <~ fipn|w; =1 —|—5)\/f1,un> < exp ( - ;5(1\/_{17;), (2.9)

so that ] 2
P (Eli cw; € Jp, Dy < \/fl;m) < Kinexp ( - 20 +€)). (2.10)



Similarly,

P (Eli cw; € Jp, Dy > \/m) < Konexp ( — ;zl\/ﬂ) (2.11)
O

The second lemma shows that after deleting all vertices with degrees outside of I,, defined in
Step 1 of Algorithm [1] still polynomially many vertices remain with high probability.

Lemma 6. Polynomially many nodes remain. There exists v,y > 0 such that
P (|V’\ < vn(S_T)/Q) < 2exp (—@(n(3_7)/2)) (2.12)

and
P (|V’| > o/nB-7)/2 logT_l(n)) < 2exp (—@(n(?’_T)/Q)) (2.13)

Proof. Let £ denote the event that all vertices with w; € Jn satisfy 7 € V' for some € > 0, with
J, as in Lemma Let W’ be the set of all vertices with weights in J,,. Conditioned on the event
&, any vertex in W' is also in V” so that |W’| <|V’|. Then, by Lemma

P (|VI| < "/71(3_T)/2) <P <|W/| < ’Yn(?’_ﬂﬂ) + Knexp ( — e2\/pm min <1\/—T1€’ 1@)/2)
(2.14)

Furthermore,

P (wz € jn) = C((1+ o)/ frum)' ™7 = C((1 — &)/ foun) ™™ > c1(vn) 7 (2.15)

for some constant ¢; > 0 when ¢ is sufficiently small, because f; < afy for some constant a < 1
by assumption. Thus, each of the n vertices is in set W’ independently with probability at least
c1(y/pm)t=7. Choose 0 < v < ¢;. Applying the multiplicative Chernoff bound then shows that

. 2
P <|W/| < WL(BfT)ﬂ) <oxp (- o) (2.16)
201

which proves the first part of the lemma together with .

Let £ denote the event that all vertices i € V' satisfy w; € J, for some ¢ > 0, with J,, as in
Lemma {4} Let U’ be the set of all vertices with weights in J,,. On the event £’, any vertex in V’
is also in U’ so that |U’| > [V’|. Then, by Lemma [4]

B (V15> /=) < 2 (0 /) s (=2 immin (221, 22) ).
(2.17)

Furthermore, for some ¢y > 0,
P (wi € Ju) = C((1 = e)y/ fiun)' ™7 = C((1 + )/ fopn)' ™7 < ca(Vn/log(n))' =7, (2.18)
where we used that f; > 1/log(n). Similarly to (2.16]),

_ A2
P (\U’\ > AnB-7)/2 longl(n)) < exp (—(6227) long(n)n(3_T)/2> , (2.19)
C2

which proves the second part of lemma. O



We now use these lemmas to prove Theorem

Proof of Theorem , We condition on the event that V' is of polynomial size (Lemma @ and
that the weights are within the constructed lower and upper bounds (Lemma|4)), since both events
occur with high probability. This bounds the edge probability between any pair of nodes i and j

in V' as

(L+e)v fopn(1 + )/ fapn
pn ’
Because fo < b < 1 for some constant b, p;; < py < 1 for some constant p if we choose € small
enough. Similarly,

pij < min ( 1) = fa(1+¢)% (2.20)

WWJ):@( 1 ) (2.21)

Ppij > min ( n Tog(n)

by our choice of fi, so that p;; > ca/log(n) =: p_ for some constant co. Let E := |Eg| be the

number of edges in H. We upper bound the probability of not finding H in one of the partitions

k
of size k of V' as 1 — pZ(1 — p+)(2)_E. Since all partitions are disjoint we can upper bound the
probability of not finding H in any of the partitions as

Ll
2

P (H not in any set of partitions) < (1 —pP(1 - p+)(§)7E) L (2.22)

Using that E < k2, (g) — E <k? and that 1 — 2 < e™® results in

V/
P (H not in the partitions) < exp (—pk2(1 — p+)k2 V k |J) . (2.23)

3—7

Since |V'| = Q (n z ), [[V'/k] > dns_TT/k; for some constant d > 0. We fill in the expressions
for p_ and py, with c¢g > 0 a constant

E 2
d 3—7 k
P (H not in the partitions) < exp | — nz s . (2.24)
k logn

Now apply that k£ < log% (n). Then

3—7 log% n
P (H not in the partitions) < exp | —22 (1 <5 )
log3 n ogn

(2.25)
< exp (—anTT’O(l)) )

Hence, the inner expression grows polynomially such that the probability of not finding H in one
of the partitions is negligibly small. The running time of the partial search is given by

! 4
|‘]/€ | <§) < Z(S) < nk < net, (2.26)

which concludes the proof for k < log'/3(n). O

Proof of Corollary[4 If k > 1og%(n), n < ek3, so that the time it takes to solve the subgraph
isomorphism problem is bounded by a function of k.
1
For k < log?(n), Theorem [l shows that the induced subgraph isomorphism problem can be

solved in time nk < Zlek4' Thus, with high probability the induced subgraph isomorphism problem
can be solved in ne*" time, which proves that it is in typFPT. O



Proof of Theorem[3 The proof of Theorem [3]is very similar to the proof of Theorem [I} The only
way Algorithm |2| differs from Algorithm [I]is in the selection of the sets S;. As in the previous
theorem, we condition on the event that yn®3=7/2 < |V/| < 4'nB-7)/210g™ " (n) (Lemma@) and
that the weights of the vertices in G’ are bounded as in Lemma

The graph G’ = (V’, E’) constructed in Step 5 of Algorithm [2f then consists of ©(n(3~7)/2)
vertices. Furthermore, by the bound on the connection probabilities of all vertices in G”,
the expected degree of a vertex i in G’, D, ¢, satisfies E[D; q/] = Qn~7/2/log(n)). We
can use similar arguments as in Lemma [4] to show that D; g = Q(n®3~7/2/log(n)) with high
probability for all vertices in G’. Since G’ consists of O(n3~7)/2log(n)™~!) vertices, D; g =
O(nB=7)/2log(n)™~1!) as well. This means that for k < log%(n), Steps 8-11 are able to find a
connected subgraph on k vertices with high probability.

We now compute the probability that S; is disjoint with the previous j — 1 constructed sets.
The number of vertices in sets S;_1,...,S1 is bounded by (j — 1)k. The probability that the first
vertex does not overlap with the previous sets is therefore bounded by 1 — (5 — 1)k/|V’|, since
that vertex is chosen uniformly at random. The second vertex is chosen in a size-biased manner,
since it is chosen by following a random edge. The probability that vertex ¢ is added can therefore
be bounded as
D, ¢ < Mlog™*(n)
20Er = V|
for some constant M > 0 by the conditions on the degrees. Therefore, the probability that S;
does not overlap with one of the previously chosen (at most (j — 1)k) vertices can be bounded
from below by

P (vertex i is added) = (2.27)

k—1
k(j—1 ME(j —1)log” "
P (S; does not overlap with previous sets) > (1 — (|jV’|)> (1 - 9 &,rg (n))
(2.28)
Thus, the probability that all j sets do not overlap can be bounded as
. _ G-k
ME(j —1)log” "
P(S;NS;_1--- NS =) > (1 _ MEG |‘)//|og (”)) : (2.29)

which tends to one when jk = o(n®~7)/4). Let sqis denote the number of disjoint sets out of the s
sets constructed in Algorithm Then, when s = Q(n®) for some a > 0, sqis > n” for some 3 > 0
with high probability, because k < log*/ 3(n).

The probability that H is present as an induced subgraph is bounded similarly as in Theorem ]
We already know that k—1 edges are present. For all other E— (k—1) edges of H, and all (’2“) —-F
edges that are not present in H, we can again use and to bound on the probability
of edges being present or not being present between vertices in V’. Therefore, we can bound the
probability that H is not found similarly to as

P (H not in the partitions) < P (H not in the disjoint partitions)
2 2
< exp (—p’i (1—pp)* 3dis> :

Because sqis > n? for some 3 > 0, this term tends to zero exponentially. The running time of the
partial search can be bounded similarly to (2.26) as

s(F < sk* = O(nk), (2.30)
(2

where we used that s < n/k. O

3 Experimental results

Figure (1| shows the success rate of Algorithm [I defined as the fraction of times Algorithm
succeeds in finding a cycle of size k in an inhomogeneous random graph on 107 vertices. Even



0.8

0.6

0.4

success rate

0.2} 8

Figure 1: The fraction of times step 7 in Algorithm |1f succeeds to find a cycle of length %k in an
inhomogeneous random graph with N = 107, 7 = 2.5, averaged over 500 network samples with
J1=1/log(n) and f> = 0.9.

though for large n Algorithm [I]should find an instance of a cycle of size k in step 7 of the algorithm
with high probability, we see that Algorithm [1| never succeeds in finding one of size 7. The success
rate of Algorithm [I] on smaller cycles is also far away from 1, because of the finite size effects
discussed before.

Figure also plots the fraction of times Algorithm [2] succeeds to find a cycle. We set the
parameter s = 10000 so that the algorithm fails if the algorithm does not succeed to detect motif
H after executing step 13 of Algorithm [2] 10000 times. Because s gives the number of attempts to
find H, increasing s may increase the success probability of Algorithm [2] at the cost of a higher
running time. However, in Figure 2B} for small values of k, the mean number of times Step 13
is executed when the algorithm succeeds is much lower than 10000, so that increasing s in this
experiment probably only has a small effect on the success probability.

Algorithm 2] with f; = 1/log(n) and f> = 0.9 in line with Theorem [3outperforms Algorithm i}
Figure also shows that the number of attempts needed to detect a cycle of length & is small
for £ < 6. For larger values of k the number of attempts increases. This can again be ascribed to
the finite size effects that cause the set V' to be small, so that large motifs may not be present on
vertices in set V'.

We also plot the success probability when using different values of the functions f; and fs,
outside the window where Theoremholds. When fo = o0, all vertices of degree at least +/ f1un are
included in V', asin [11]. In this setting, the success probability of the algorithm decreases. This is
because the set V’ now contains many high degree vertices that are much more likely to form clique
motifs than cycles or other connected motifs on k vertices. This makes f; = 1/log(n), foa = 00 a
very efficient setting for detecting clique motifs [11]. For the cycle motif however, Figure Shows
that more checks are needed before a cycle is detected, and in some cases the cycle is not detected
at all.

The setting f; = 0 and fo = oo is equivalent to including all vertices in |V’|. This is also
less efficient than the setting of Theorem (3, as Figure [2a) shows. In this situation, the number of
attempts needed to find a cycle of length k is larger than for Algorithm [2| for & < 6.

Most results in this section are about finding cycles, since cycles easily scale in k (larger cycles).
However, Algorithm [2] with parameters as in Theorem [3| also helps to find other subgraphs than
cycles. Table [I] presents the probability that the algorithm detects the subgraph of Figure [3]
Indeed, the probability that Algorithm [2| with parameters chosen as in Theorem [3] succeeds is
much larger than the probability that the algorithm succeeds on the whole data set.
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Figure 2: Results of Algorithm [2[ on an inhomogeneous random graph with N = 107, 7 = 2.5
for detecting cycles of length k, using s = 10000. The values are averaged over 500 generated
networks.

fi=1/log(n), fo =09 f1=1/log(n),fo=00 f1=0,fs=00
Success rate 0.47 0 0

Table 1: Success rate of Algorithm on the subgraph of Figure [3{for N = 106, 7 = 2.5, s = 10000
over 500 generated networks.

3.1 Real network data

We now check Algorithm [2] on four real-world networks with power-law degrees: a Wikipedia
communication network [21], the Gowalla social network [21], the Baidu online encyclopedia [22]
and the Internet on the autonomous systems level [21]. Table 2| presents several statistics of these
scale-free data sets. Figure [4] shows the fraction of runs where Algorithm [2] finds a cycle as an
induced subgraph. We see that for the Wikipedia social network in Figure [{a] Algorithm [2] with
fi =1/log(n) and f> = 0.9 in line with Theorem [3]is more efficient than looking for cycles among
all vertices in the network (f; = 0, f = o0). For the Baidu online encyclopedia in Figure
however, we see that Algorithm [2| with f; = 1/log(n) and fo = 0.9 performs much worse than
looking for cycles among all possible vertices. In the other two network data sets in Figures [4D]
and [Ad] the performance on the reduced vertex set and the original vertex set is almost the same.
Figure [5] shows that in general, Algorithm [2] with settings as in Theorem [3]indeed seems to finish
in fewer steps than when using the full vertex set. However, as Figure [6c| shows, for larger values
of k the algorithm fails almost always.

These results show that while Algorithm [2| with f7, fo in line with Theorem (3] is efficient on
inhomogeneous random graphs, it may not always be efficient on real-world data sets. This is not
surprising, because there is no reason why in real-world data the vertices of degrees proportional
to v/n should behave like an Erdds-Rényi random graph, like in the inhomogeneous random graph.
Thus, in terms of subgraphs, the inhomogeneous random graph and real-world network data differ

Figure 3: The subgraph corresponding to the results in Table
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n FE T

Wikipedia 2,394,385 5,021,410 2.46
Gowalla 196,591 950,327  2.65
Baidu 2,141,300 17,794,839 2.29
AS-Skitter 1,696,415 11,095,298 2.35

Table 2: Statistics of the data sets: the number of vertices n, the number of edges F, and the
power-law exponent 7 fitted by the method of [7].

significantly.

We therefore investigate whether selecting vertices with degrees in I,, = [(un)7/log(n), (un)?]
for some other value of v in Algorithm [2] leads to a better performance. Figure [] and [f] show
for every data set one particular value of « that works well. For the Gowalla, Wikipedia and
Autonomous systems network, this leads to a faster algorithm to detect cycles. In these examples,
the success probability of the algorithm is similar to the success probability on the full data set,
but Figure |5 shows that it finds the cycle much faster than the algorithm on the full data set.
Only for the Baidu network other values of v do not improve upon randomly selecting from all
vertices. This indicates that for most networks, cycles do appear mostly on degrees with specific
orders of magnitude, making it possible to sample these cycles faster. Unfortunately, these orders
of magnitude may be different for different networks. Across all four networks, the best value of
~ seems to be smaller than the value of 0.5 that is optimal for the inhomogeneous random graph.

In these experiments, we tested the values v = 0.1,0.2,0.3,0.4, 0.5, and we present in Figure [4]
the values of v that worked best for each data set. However, it would be useful to be able to
select the best value of v without trying several values at first. For example, it may be possible
to relate v to the degree-exponent 7, or to a specific quantile of the degree sequence. Finding
efficient methods to estimate v from a data set is an interesting question for further work.

4 Conclusion

We presented an algorithm which solves the induced subgraph problem on inhomogeneous random
graphs with infinite variance power-law degrees in time O(ne*") with high probability as n grows
large. This algorithm is based on the observation that for fixed k, any subgraph is present on k
vertices with degrees slightly smaller than ,/un with positive probability. Therefore, the algorithm
first selects vertices with those degrees, and then uses a random search method to look for the
induced subgraph on those vertices.

We show that this algorithm performs well on simulations of inhomogeneous random graphs.
Its performance on real-world data sets varies for different data sets. This indicates that the
degrees that contain the most induced subgraphs of size k in real-world networks may not be close
to y/n. We then show that on these data sets, it may be more efficient to find induced subgraphs
on degrees proportional to n? for some other value of v. The value of v may be different for
different networks.

Our algorithm exploits that induced subgraphs are likely formed among ,/un-degree vertices.
However, certain subgraphs may occur more frequently on vertices of other degrees [16]. For
example, star-shaped subgraphs on k vertices appear more often on one vertex with degree much
higher than /un corresponding to the middle vertex of the star, and k — 1 lower-degree vertices
corresponding to the leafs of the star [16]. An interesting open question is whether there exist
better degree-selection steps for specific subgraphs than the one used in Algorithms [I] and
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