Accurate computation of quaternions from rotation matrices

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Springer International Publishing

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The main non-singular alternative to 3×3 proper orthogonal matrices, for representing rotations in R3, is quaternions. Thus, it is important to have reliable methods to pass from one representation to the other. While passing from a quaternion to the corresponding rotation matrix is given by Euler-Rodrigues formula, the other way round can be performed in many different ways. Although all of them are algebraically equivalent, their numerical behavior can be quite different. In 1978, Shepperd proposed a method for computing the quaternion corresponding to a rotation matrix which is considered the most reliable method to date. Shepperd’s method, thanks to a voting scheme between four possible solutions, always works far from formulation singularities. In this paper, we propose a new method which outperforms Shepperd’s method without increasing the computational cost.

Descripció

The final publication is available at link.springer.com

Persones/entitats

Document relacionat

Versió de

Citació

Sarabandi, S., Thomas, F. Accurate computation of quaternions from rotation matrices. A: International Conference on Advances in Robot Kinematics. "Vol 8 of Springer Proceedings in Advanced Robotics". Springer International Publishing, 2018, p. 39-46.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

Altres identificadors

Referències