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Abstract. An experimental analysis of the asynchronous version of the
“Game of Life” is performed to estimate how topology perturbations
modify its evolution. We focus on the study of a phase transition from an
“inactive-sparse phase” to a “labyrinth phase” and produce experimental
data to quantify these changes as a function of the density of the initial
configuration, the value of the synchrony rate, and the topology missing-
link rate. An interpretation of the experimental results is given using the
hypothesis that initial “germs” colonize the whole lattice and the validity
of this hypothesis is tested.

1 Introduction

Cellular automata were originally introduced by von Neumann in order to study
the logical properties of self-reproducing machines. Following Ulam’s suggestions,
the requirements he made for constructing such a machine was the discreteness
of space using cells, discreteness of time using an external clock, the symmetry
of the rules governing cells interaction, and the locality of these interactions; it
resulted in the birth of the cellular automaton (CA) model. In order to make
the self-reproduction not trivial he also required that the self-reproducing ma-
chine should be computation-universal (e.g., [13]). The resulting CA used 29
elementary states for each cell and updates used 5 neighbors. Later on, Conway
introduced a CA called “Game of Life” or simply Life which was also proved to
be computation universal [2]. This CA is simpler than von Neumann’s in at least
two ways: the local rule uses only two states and it can be summarized with by
sub-rules (birth and death rules).

However, the question remained open to know what is the importance of
perfect synchrony on a CA behavior. Indeed, since the first study on the effects
of asynchronous update carried out by Ingerson and Buvel [6], many criticisms
have been addressed to the use of the CA as models of natural phenomena.
Some authors investigated, using various techniques, how synchrony variations
changed CA qualitative behavior [6], [10], [3], [5], [14], [8]. All studies agree on the
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fact that for some CA, there are situations in which small changes in the update
method lead to qualitative changes of the evolution of the CA, thus showing the
need for further studies of robustness to asynchronism. Similarly, some authors
investigated the effect of perturbing the topology (i.e., the links between cells)
in one dimension [11] by adding links, or in two dimensions with small-world
construction algorithms [15], [9]. Here too, the studies showed that robustness
to topology changes was a key factor in the CA theory and that some CA showed
“phase transitions” when varying the intensity of the topology perturbation.

The aim of this work is to question, in the case of Life, the importance of
the two hypotheses used in the classical CA paradigm: what happens when the
CA is no longer perfectly synchronous and when the topology is perturbed? In
Section 2, we present the model and describe the qualitative behavior induced
by the introduction of asynchronism and/or topology perturbations. In Section
3.1, we observe that (i) Life is sensitive to asynchronism; (ii) robust to topology
perturbations and (iii) that the robustness to asynchronism is increased when the
topology characteristics become irregular. Section 3.2 is devoted to presenting a
rigorous experimental validation and exploration of these phenomena for which
a potential explanation based on the notion of “germ” development is discussed
and studied in Section 4.

2 The Model

Classically, Life is run on a regular subset of Z2. For simulation purposes, the
configurations are finite squares with N ×N cells and the neighborhood of each
cell is constituted of the cell itself and the 8 nearest neighbors (Moore neighbor-
hood). We use periodic boundary conditions meaning that all cell position indices
are taken in Z/NZ. The type of boundary conditions does play an important
role at least for small configurations as shown in [4].

Life belongs to the outer-totalistic (e.g., [12], [11]) class of CA: the local
transition rule f is specified as a function of the present state q(c) and of the
number S1(c) of cells with states 1 in the neighborhood. The Life transition
function f(q, S1) can be written:

f(0, S1) = 1 if S1 = 3 ; f(0, S1) = 0 otherwise, (birth rule)

f(1, S1) = 1 if S1 = 2 or S1 = 3;f(1, S1) = 0 otherwise. (death rule)

In the sequel, we consider Life as an asynchronous cellular automaton (ACA)
acting on a possibly perturbed topology.

There are several asynchronous dynamics: one may, for example update cells
one by one in a fixed order from left to right and from bottom to top. This update
method is called “line-by-line sweep” [14] and it has been shown that this type
of dynamics introduce spurious behaviors due to the correlation between the
spatial arrangement of the cells and the spatial ordering of the updates. These
correlations can only be suppressed with a random updating of the cells. In
this work, we choose to examine only one type of asynchronism which consists



in applying the local rule, for each cell independently, with probability α. The
parameter α is called the “synchronicity” [5] or the synchrony rate; one can also
view it as a parameter that would control the evolution of a probabilistic cellular
automata (PCA) where the transition function results in applying Life rule with
a probability α and the identity rule with probability 1− α.

We choose to perturb topology by definitely removing links between cells. Let
G0 = (L, E0) be the oriented graph that represents cells interactions: (c, c′) ∈

E if and only if c′ belongs to neighborhood of c. The graph with perturbed
topology G = (L, E) is obtained by examining each cell c ∈ L and, for each
cell in the neighborhood of c and removing the link (c, c′) with a probability ǫ−;
the parameter ǫ− is called missing-link rate. Note that, as the local function is
expressed in an outer-totalistic mode, we can still apply it on neighborhoods of
various sizes. The definition we use induces an implicit choice of behavior in the
case where a link is missing : the use of S1 in the local rule definition implies
that the cell will consider missing cells of the neighborhood as being in state 0.
Other choices would have been possible; for example assuming this state to be
1 or the current value of the cell itself.

3 Observations and Measures

3.1 Qualitative Observations

Figure 1 shows that the behavior of Life depends on the synchrony rate α: a phase
with labyrinthine shapes appears when α is lowered. Bersini and Detours studied
this phenomenon and noticed that the asynchronous (sequential) updating of
Life was significantly different from the (classical) synchronous version in that
sense that a “labyrinth phase” (denoted by LP) appeared (see Fig. 1 below). For
small lattice dimensions, they observed the convergence of this phase to a fixed
point and concluded that asynchrony had a stabilizing effect on Life [3].

The phase transition was then measured with precision by Blok and Berg-
ersen, who used the final density (i.e, the fraction of 1’s sites) as a means of
quantifying the phase transition. They measured the value αc for which the
phase transition was to be observed and found αc = 0.91 [5]. They showed that
the type of phase transition is continuous (or a second-order transition): when α
is decreased from α = 1.0 to α = αc, no change is observed in terms of the values
of the average density. When we have α < αc the “labyrinth phase” gradually
appears and the average density starts increasing in a continuous way. It is thus
the derivative of the density that shows discontinuity rather than the function
itself.

Figure 2 shows that the removal of links between cells does not qualitatively
perturb the aspect of the final configurations attained. So, according to the
observation of steady states, synchronous Life seems somehow robust to topology
perturbations. However, we also noticed that the transients are much shorter in
presence of topology errors: for N = 50×50, the order of magnitude of transients
are T = 1000 for ǫ− = 0 and T = 100 for ǫ− = 0.1.



α = 1.0 α = 0.5 sequential updating

Fig. 1. Life configurations for N = 50 × 50, after T = 100 time steps, starting from
a random configuration of density dini = 0.5. In the sequential updating, cells are
randomly updated one after another.

ǫ− = 0 ǫ− = 0.05 ǫ− = 0.10

Fig. 2. Life configurations for synchronous evolution (α = 1.00) with N = 50 × 50,
after T = 1000 time steps, starting from a random configuration of density dini = 0.5.

ǫ− = 0 ǫ− = 0.05 ǫ− = 0.10

Fig. 3. Life configurations for N = 50× 50, after T = 1000 time steps, starting from a
random configuration of density dini = 0.5: (up) α = 0.90 (middle) α = 0.75 (bottom)
α = 0.50. The figure in the upper-left corner shows that the system is still in a transient
mode.



Figure 3 shows what happens when both asynchronism and topology pertur-
bations are added. Rows of Fig. 3 display the behavior with a fixed synchrony
rate α and columns display the behavior with a fixed missing-link rate ǫ−. We
see that increasing topology errors from ǫ− = 0 to ǫ− = 0.05 makes the phase
transition occur for a higher value of synchrony rate αc. With a further increase
from ǫ− = 0.05 to ǫ− = 0.10, the phase transition cannot be observed any more,
at least for the selected values of α.

This demonstrates that both parameters ǫ− and α control the phase tran-
sition between the “inactive-sparse phase” [9] and the “labyrinth phase” (LP).
The next section is devoted to quantitatively measure the interplay of these two
control parameters.

3.2 Quantitative Approach

To detect the apparition of the labyrinth phase (LP), we need to look at the
configurations by eye or to choose an appropriate macroscopic measure. Clearly, a
configuration in LP contains much more 1’s than a configuration in the “inactive-
sparse phase” ([9]). This leads us to quantify the change of behaviour using
the measurement of the “steady-state density” (i.e. the average density after a
transient time has elapsed). This method has been chosen by various authors
(e.g. Blok and Bergersen [5]) and it has been applied to exhaustively study both
the dynamics [7] and the robustness to asynchronism [8] of one dimensional
elementary cellular automata.

We define the steady-state density ρ(dini, α) using the sampling algorithm
defined in [8]: Starting from a random initial configuration constructed with
a Bernoulli process of parameter dini, we let the ACA evolve with a synchrony
rate α during a transient time Ttransient then we measure the value of the density
during a sampling time Tsampling. The value of ρ is the average of the sampled
densities.

The sampling operation results in the definition of a function ρ(dini, α) that
can be represented in the form of a “sampling surface”. This surface contains part
of the information on how the behaviour of a CA is affected by asynchronism.
Figure 4 shows the experimental results obtained for N = 50 × 50, Ttransient =
1000 , Tsampling = 1000. The transient time Ttransient is chosen according to the
observations made in [1] where equivalent transient times were found for greater
lattice sizes.

Let us first look at what happens for dini ∈ [0.2, 0.8] (right column of Fig. 4).
The invariance of the surface relatively to the dini-axis shows that the macro-
scopic behavior of Life does not depend on the value of this parameter within
this range. The upper right corner of Fig. 4 shows that for ǫ− = 0 (regular
topology), the phase transition occurs for αc ∼ 0.90 as expected [5]. However,
when ǫ− increases, experiments show that αc also decreases. This means that the
settlement of LP becomes more difficult as links are removed; this can be inter-
preted as an increase of the robustness to asynchrony. We can observe that for
ǫ− = 0.10 , the surface is flat and horizontal, which means that the behavior is
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Fig. 4. Sampling surfaces for ǫ− = [0 · · · 0.10], N = 50 × 50, Ttransient = 1000 ,
Tsampling = 1000. The left column has a different range for dini to focus on the be-
havior for small initial densities.



not anymore perturbed by asynchronism (at least if we consider our observation
function).

The left column of Fig. 4 shows the behavior of Life for dini ∈ [0, 0.2]. We
observe two different abrupt change of behaviors. On the one hand, there is a
value of dcini which separates the “inactive-sparse phase” and LP. On the other
hand, the value of dcini increases as ǫ− increases. This means that LP becomes
more difficult to reach when links are removed; which again can be interpreted
as a gain of robustness.

Experiments were held for various lattice sizes and allowed to control that
the sampling surface aspect was stable with N ; we however observed that when
ǫ− and α are fixed, the value of dcini is a decreasing function of N .

All the previous phenomena may be the consequence of multiple intricate fac-
tors. In the next section, we study the evolution of so called “micro-configurations”
put in an empty array and propose a first hypothesis in the direction of under-
standing these behaviors.

4 Micro-configurations Analysis

4.1 Experiments

The observation of the settlement of LP shows that it can develop from very
localized parts of the lattice and then spreads across the lattice until it fills it
totally. By analogy with a crystal formation, we call “germs” these particular
configurations that have the possibility to give birth to an invasive LP. We inves-
tigate the existence of germs by performing an exhaustive study of the potential
evolution of micro-configurations, i.e. 3× 3 configurations that are placed in an
empty array. There are 512 such configurations and we experimentally quantify,
for each one, the probability that a it becomes a germ. Our goal is to infer the
behavior of the whole structure from the evolution of these micro-configurations.

Setting the synchrony rate to α = 0.5, we used the following algorithm:
For every micro-configuration i ∈ I, (a) we initialize the lattice N × N with i,
and (b) we let the CA evolve until it reaches a fixed point or until it reaches
LP. We repeat S = 1000 times operations (a) and (b) for the same initial micro-
configuration but for a different update histories. We consider that the CA has
reached LP if the density is greater of equal than a limit density d∞ = 0.1.
Indeed, we observed that if the CA was able to multiply the number of 1’s from
the micro-configuration to a constant ratio of the lattice, then it will almost
surely continue to invade the whole lattice and, asymptotically, reach LP. We
experimentally obtain the probability Pgerm[i] that a configuration i is a germ.
Grouping micro-configurations by the number k of 1’s they contain, we obtain
an array with 9 entries Pgerm(k), k ∈ [0, 9], displayed in Table 1.

Results show that for k < 3, Pgerm(k) = 0, which means that all such micro-
configurations always tend to extinction. For n ≥ 3, the probability to reach LP
increases as n increases.



Table 1. Probability Pgerm(k) for a micro-configuration to be a germ (in %) as a
function of the number k of 1’s for different missing-link rates ǫ− (in %).

k 0 1 2 3 4 5 6 7 8 9

ǫ− = 0 0 0 0 1.28 4.34 7.88 14.52 21.76 29.92 40.90
ǫ− = 2 0 0 0 0.28 2.17 3.93 7.22 11.18 15.34 21.70
ǫ− = 4 0 0 0 0.19 0.72 1.24 2.40 3.96 5.52 8.00
ǫ− = 6 0 0 0 0.02 0.06 0.09 0.24 0.34 0.63 1.30
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Fig. 5. Probability to reach LP as a function of dini for different lattice sizes N ∈
{20, 30, 40, 50} and different missing-link rates: ǫ− = 0, ǫ− = 0.02, ǫ− = 0.04 from top
to bottom. Left column shows theoretical curves calculated with the independent-germ
hypothesis; the right column shows the actual measurements.



4.2 Inferring Some Aspects of the Global Behavior

Our idea is to use the previous results about germs to extend them to a descrip-
tion of the global behavior of Life. Unfortunately, we are not able to do that
in the exact way. In a first approximation, let us assume that we can infer this
global behavior by approximating the probability PLP for a uniformly initial-
ized system to reach LP using an “independent-germ hypothesis”: interactions
between potential germs are neglected and we assume that LP is reached if and
only if there is at least one cell that gives birth to LP. This results in the appli-
cation of formula : PLP = 1− (1−PLP1)

N∗N where PLP1 is the probability that

one cell gives birth to LP. We have PLP1 =
∑9

k=0 Pgerm(k) · Papp(k, dini), where
Papp(k, dini) is the probability that a micro-configuration initialized randomly
with dini contains k 1’s. It is simply obtained by applying the binomial formula:
Papp(k, dini) =

(

9

k

)

dini
k(1− dini)

9−k.
Calculated and experimental values of PLP(dini, ǫ

−) are given in Fig. 5 and
show that this assumption is justified in a first approximation even if the pre-
dictions seem more accurate for small values of ǫ−.

The germ hypothesis allow us to understand better some of the observed
behavior. Let us first consider the abrupt change of behavior observed for dini ∈
[0, 0.20]: this can come from the fact that as dini increases the probability to
observe a micro-configuration that contains more 1’s increases thus increasing
the probability to find a germ in the initial configuration. We can also understand
with this point of view the invariance of the sampling surfaces in the dini-axis
with dini > 0.20 by the fact, observed in Fig. 5 that in this case PLP ∼ 1, that is
the “labyrinth phase” always appears. In the same way, the shift of dcini observed
in Fig. 4 when varying ǫ− can be explained by the looking at the variations of
Pgerm(k) with ǫ− : we see that all probabilities to reach LP decrease when ǫ−

increases. Finally, we are able to qualitatively predict the scaling of dcini with
the lattice size N from the plots the function PLP(dini, ǫ

−) : when dini and PLP

are relatively small (i.e., PLP < 0.1), we have a linear scaling of PLP with N2;
whereas as PLP is close to saturation, there tends to be no variations with N .

5 Conclusion

Experiments have shown that Life’s transition from an “inactive-sparse phase”
to a “labyrinth phase” (LP) is a continuous phase transition dependent on the
synchrony rate α and whose critical value αc is controlled by the missing-link
rate ǫ−. As the topology was perturbed (i.e., when ǫ− increased), the inactive-
sparse phase domain extends while the LP domain shrinks. The abrupt change
in behavior according to the values of initial density dini was interpreted with the
hypothesis that the settlement of LP results from the development of “germs”,
i.e. small configurations that are able to “colonize” the whole lattice. The study
of the evolution of potential germs from micro-configurations allowed us to start
to understand the observations and to give some predictions on the probability
to reach LP starting from a random configuration. One interesting question is



to examine whether these observations hold for a large class of CA or if they are
somehow related to the computational universality of Life.
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