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Abstract The development of the patchwise Partial
Differential Equation (PDE) framework a few years a-
go has paved the way for the PDE method to be used
in mesh signal processing. In this paper we, for the first
time, extend the use of the PDE method to progressive
mesh compression and mesh denoising. We, meanwhile,
upgrade the existing patchwise PDE method in patch
merging, mesh partitioning, and boundary extraction
to accommodate mesh signal processing. In our new
method an arbitrary mesh model is partitioned into
patches, each of which can be represented by a small set
of coefficients of its PDE spectral solution. Since low-
frequency components contribute more to the recon-
structed mesh than high-frequency ones, we can achieve
progressive mesh compression and mesh denoising by
manipulating the frequency terms of the PDE solution.
Experimental results demonstrate the feasibility of our
method in both progressive mesh compression and mesh
denoising.

Keywords Spectral method - Mesh processing -
Patchwise PDE - Progressive mesh compression - Mesh
denoising

1 Introduction
Since Bloor and Wilson’s pioneering work [3] first ap-

plied Partial Differential Equations (PDEs) to generat-
ing blend surface decades ago, advantages of the PDE
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method in computer graphics have been gradually dis-
covered. One of the main advantages comes from the
ability that the differential operators of PDEs can gen-
erate smooth surfaces. Another major advantage is that
a 3D surface can be generated by manipulating a rela-
tively small set of boundary curves. These advantages
enable the PDE method to be applied to many research
fields, such as surface modeling [4] and computer-aided
manufacturing [5LI0] in the 1990s, and shape morphing
[6], Web visualisation [28], interactive design [37], face
parameterisation [33], pharmaceutical modeling [I], and
medical image visualisation [7] after the millennium.

In the Bloor and Wilson’s PDE (BWPDE) method,
a 3D parametric PDE patch is defined as a solution to
an elliptic PDE that is analytically resolved by impos-
ing Fourier analysis on its boundary conditions. In this
sense, the PDE method possesses some spectral char-
acteristics due to the involvement of Fourier analysis,
but these spectral characteristics of the PDE method
have never been explored previously, mainly because
the PDE method, all the time leveraged as a model-
ing tool of smooth surfaces, cannot be directly used to
approximate irregular and sharp geometric details of a
given surface.

In order to resolve this problem, Sheng et al. [32]
proposed a patchwise PDE (PPDE) method, the main
distinction of which from the BWPDE method is the lo-
calisation of the coordinate system for each PDE patch.
Although the development of the PPDE method has
paved the way for spectral processing of irregular geo-
metric meshes, some issues in the PPDE method, such
as patch merging, mesh partitioning, and boundary ex-
traction, are yet to be studied to accommodate spectral
analysis.

In this paper we, for the first time, explore its spec-
tral nature of the PPDE method in mesh signal process-
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ing, more specifically, in progressive mesh compression
and mesh denoising. To accommodate progressive mesh
compression and mesh denoising we upgrade the PPDE
method as follows. First, instead of manually selecting
position fixers for PDE patch merging [32], we intro-
duce a new merging scheme, which blends the recon-
structed PDE patches in terms of point cloud before the
blended point cloud is globally triangulated. The new
merging scheme enables the PDE patches to be seam-
lessly blended together without user supervision. Sec-
ond, instead of partitioning the mesh with a simplifica-
tion algorithm [32] that may give rise to geometry loss,
we adopt MeTiS [22] for mesh partitioning. Patches seg-
mented by MeTiS retain both geometry and topology
of the original mesh. Third, the boundary extraction
method used in [32] was tailored for triangle-shaped
PDE patches, while ours in this paper is designed for
MeTiS-partitioned patches with arbitrary shapes.

The philosophy behind our method is stated as fol-
lows. By imposing Fourier analysis on the PDE bound-
ary conditions the mesh geometry can be handled in the
frequency domain. By taking advantage of the spectral
property that low-frequency components contribute more
to the reconstructed mesh than the high-frequency ones
in terms of geometric structure, mesh signal process-
ing can be performed. In mesh progressive compres-
sion, we first transmit the low-frequency coefficients of
PDE solutions for a coarse mesh, followed by transmit-
ting the high-frequency coefficients and at the receiving
end, gradually recovering more geometric details of the
mesh. In mesh denoising, a mesh with noise is trans-
formed into the spectral domain by Fourier analysis of
the PPDE method, and we can achieve low-pass filter-
ing by retaining the low-frequency components while
discarding the high-frequency ones. Iterating the above
process, we can obtain a desired denoising result. It is
worth noting that our primary goal is not to propose
new progressive mesh compression and mesh denoising
methods exceeding the existing ones, although our new
methods outperform them to some extent.

The rest of the paper is structured as follows. The
related work on progressive mesh compression, mesh
denoising as well as PDE methods is briefed in Section
2. Section 3 introduces the PPDE method. Section 4 is
dedecated to the mesh preprocessing technologies used,
including mesh partitioning and boundary extraction.
Section 5 describes our progressive mesh compression
scheme. Section 6 states our mesh denoising scheme.
Section 7 lends experimental evaluations to our method.
Section 8 concludes the paper.

2 Related Work

Both progressive mesh compression and mesh denois-
ing have been playing crucial roles in 3D mesh signal
processing. In this section, we briefly review both the
research fields as well as the mainstream PDE methods.

2.1 Progressive Mesh Compression

Progressive mesh compression has been studied for years,
the existing methods of which can be grouped into s-
patial and spectral methods. The first progressive mesh
compression method introduced by Hoppe [1§] is a s-
patial method, where he used edge collapse and vertex
split operations to achieve progressive compression. In
order to make the compression ratio of [I§] closer to
those of single-rate methods, Taubin et al [36] intro-
duced a progressive algorithm through the forest split
operation, while Pajarola and Rossignac [27] improved
Hoppe’s method by grouping vertex splits into batch-
es. Using the above two methods, a lower compression
rate can be obtained for meshes with acceptable qual-
ity. In fact, progressive mesh compression is to find a
balance between the restored mesh quality and com-
pression rate, namely the rate-distortion trade-off. For
this purpose, Lee et al. [26] proposed a rate-distortion
optimization (RDO) algorithm with adaptive quanti-
zation. All the above are of connectivity-driven algo-
rithms that first encode connectivity data and then
use them to encode geometry data. Instead, geometry-
driven algorithms proceed in an opposite way. Since
geometry data take up more storage space than con-
nectivity data, geometry compression is generally more
efficient than connectivity compression. Gandoin and
Devillers [14] focused their effort on geometry compres-
sion by proposing a geometry-driven algorithm based
on the KD-tree subdivision, while Peng and Kuo [30]
proposed a geometry-driven algorithm using the octree
subdivision.

Different from all the above spatial methods, the
methods focusing on spectral processing can build a
good approximation of the original mesh and achieve a
lower compression rate in a global manner. Karni and
Gotsman [20] proposed a spectral method, where mesh
geometry was projected onto an orthonormal basis of
the Laplacian matrix constructed with the mesh topo-
logical information, and then the corresponding eigen-
values were treated as frequency components. As the
computational complexity of eigenvectors of an n X n
matrix is O(n?), to reduce the complexity the input
mesh was partitioned into a series of submeshes [20],
and each submesh was compressed independently. Nev-
ertheless, the eigenvectors were also required to com-
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pute at the decoder, and thus the computational com-
plexity of this method was too heavy for real-time appli-
cations. To overcome this problem, Karni and Gotsman
[21] proposed to use fixed basis functions rather than
variable basis functions for spectral compression of 3D
meshes. In fact, these fixed basis functions are Fouri-
er basis functions so that the process of encoding and
decoding can be efficiently implemented using the Fast
Fourier Transform. Valette and Prost [38] proposed a
compression scheme based on wavelet decomposition,
where the connectivity of a higher level mesh was recon-
structed with that of the base mesh and subdivisions,
and the mesh geometry was subsequently reconstructed
with wavelet coefficients.

2.2 Mesh Denoising

The literature in mesh denoising can also be grouped
into spatial and spectral methods. The first spectral
method for mesh fairing based on the graph Laplacian
was proposed by Taubin [35]. In this method, vertexes
of a mesh were treated as a 3D signal and defined over
the underlying mesh graph. Since then, more and more
attention has been paid to smoothing the mesh within
the spectral domain. Desbrun et al [11] proposed an im-
plicit fairing method, where a new scale-dependent um-
brella operator was used for avoiding large distortions
on irregular meshes. Zhang et al [40] proposed efficien-
t techniques to address the computational difficulties
of Butterworth filtering and implicit fairing for irreg-
ular meshes. For the Butterworth filter, they proposed
that factorizing the liner system in the complex domain
could accelerate the computation speed. As for implicit
fairing, they used successive overrelaxation to improve
the processing speed. Kim et al combined the explicit
[35] and implicit [TIL40] forms together to construct a
more flexible second order filter, named GeoFilter [24],
in which frequencies were computed automatically ac-
cording to user selected features so as to achieve a de-
sired result. Pauly and Gross [29] proposed a spectral
filtering framework for point-sampled geometric models
with noise, where a noised model was split into a num-
ber of surface patches with regularized samples, before
Fourier analysis was applied to removing the noise.
All the above methods are implemented in the spec-
tral domain. Nonetheless, both noise and geometric de-
tails in the mesh model correspond to high-frequency
components in the spectral domain. Some geometric
details are also inevitably removed during denoising.
In order to remove noise while retain more geometric
details of the mesh, some spatial methods have been
developed. For example, Fleishman et al [I3] and Jones
et al [19] developed bilateral filters based on vertex po-

sitions of the mesh, while Sun et al [34] and Zheng et al
[44] applied bilateral filters to face normals, followed by
updating the vertex positions according to the filtered
normals. The effectiveness of a bilateral filter usually
relies on the range kernel that influences the weights,
and the range weights are determined by the intensi-
ty difference of the input signal. Nevertheless, the in-
put signal as the guidance sometimes cannot achieve
desirable results, and this leads to the development of
the joint bilateral filter. Zhang et al proposed a guid-
ed mesh normal filter [43] for joint bilateral filtering of
geometry signal, where a properly constructed normal
field was used as the guidance, and the joint bilateral
filter was applied to the face normals followed by updat-
ing the vertex positions. In order to effectively denoise
3D models with variant levels of noise, Lu et al pro-
posed two robust mesh denoising approachs [I5] [10].
In [I5] an initial estimation is introduced to largely re-
duce the noise level, followed by a string of operations to
preserve features during denoising. In [I6] a three-step
method is proposed, consisting of vertex pre-filtering
of input noise, Li-median filtering of face normals, ver-
tex position updating according to the filtered normals.
In addition to the above-mentioned methods, sparsity
optimisation is also popular in mesh denoising. For ex-
ample, He and Schaefer [I7] adopted Ly minimization
to remove noise from meshes, and demonstrated its ef-
fectiveness in preserving sharp features.

2.3 The PDE Methods

The mainstream PDE methods in geometric modeling
are resolved either numerically or analytically. The ana-
lytic solution is suitable for PDEs with closed boundary
conditions. Otherwise, a numerical solution has to be
sought, usually computationally more expensive. The
pioneering PDE method proposed by Bloor and Wil-
son [3] was analytically resolved by imposing Fourier-
analysis on the boundary conditions of a biharmonic-
like fourth order PDE. Zhang and You also proposed
to analytically resolve a fourth order PDE based on the
Pseudo-Levy Series [42)39]. In order to reach a trade-
off between the surface smoothness and computation-
al complexity, a fourth-order PDE is generally chosen.
However, it can only ensure a C! continuity between
PDE patches. If a higher continuity is required a high-
er order PDE has to be employed [411[25].

All the methods surveyed above are based on an an-
alytic solution to resolve PDEs. Since not every PDE
has an analytic solution, seeking a numerical solution
can improve the generality of a PDE method. For exam-
ple, Du and Qin [12] proposed to use a finite difference
method to resolve PDEs.



Qiqi Shen et al.

Although the above includes various PDE method-
s, the BWPDE method has had a widest spectrum of
applications due to its generality and computational ef-
ficiency.

3 The PPDE Method

The PDE method adopted in this paper is a patchwise
generalization of the BWPDE method. In the BWPDE
method, a 3D parametric PDE patch S(u,v) is defined
as a solution to a biharmonic-like fourth order elliptic
PDE:

2,07\’

where 0 < u < 1,0 < v < 2w, and a is called the
smoothing parameter, governing the relative rate of s-
moothing between the v and v directions. The fourth-
order PDE is adopted because a lower-order PDE has
no freedom to specify the reconstructed surface smooth-
ness, whereas the calculation of a higher-order PDE is
more time-consuming.

The smooth nature of the PDE is reflected by the
partial differential operators in , in which the val-
ue of the function at any point on the surface is, in
a certain sense, a weighted average of the surrounding
values. Thus, a surface is obtained as a smooth tran-
sition between the boundary conditions. However, this
smooth nature makes the BWPDE method impossible
to approximate irregular and sharp geometric details of
the original surface.

In order to approximate surfaces with irregular and

sharp details, Sheng et al [32] proposed a PPDE method.

In the BWPDE method, boundary curves are extract-
ed along the surface in a consistent order, so that each
PDE patch is adjacent to two other patches. In such a
patch configuration, each PDE patch shares a global-
ized uv parametric coordinate system with the others.
Due to the smooth nature of the PDE method, such
a patch configuration smoothes out some details be-
tween the boundary curves extracted from the original
surface, which is, however, undesired in geometry ap-
proximation. On the contrary, in the PPDE method, a
surface is divided into a number of patches. According
to the size and orientation of each patch, a local uv co-
ordinate system, independent of the other patches, is
assigned to each patch. Eventually, all the individual
patches are blended to approximate the original sur-
face. Such a patch configuration enables approximation
of irregular and sharp geometric details of the original
surface. Our spectral method is built upon the PPDE
method, and PDE patch generation and patch merging
are discussed in detail as follows.

3.1 PDE Patch Generation

An original surface can be divided into a number of
patches, and each patch S(u,v) can be approximated
by a PDE, as formulated by Equation . Using the
method of separation of variables, an analytic solution
to Equation is given:

S(u, v) = Ag(u) + Z [An(u) cos(nv) + By, (u) sin(nv)]
n=1

(2)

where Ag(u) is considered to be the ”spine” of the re-
constructed surface, while the remaining terms repre-
sent a summation of "radius” vectors that give the po-
sition of reconstructed surface S(u,v) relative to the
”spine”. As a result, the PDE surface patch may be pic-
tured as a sum of the ”spine” vector Ag(u), plus a pri-
mary "radius” vector A;(u) cos(v)+ By (u)sin(v), plus a
secondary "radius” vector As(u) cos(2v)+ Be(u) sin(2v)
attached to the end of the primary ”radius”, and so on.
The amplitude of the "radius” term decays as the fre-
quency increases. It can be observed that the first few
“radii” containing the most essential geometric infor-
mation are the major contributors to surface genera-
tion while the following ones are trivial enough to be
neglected. Thus, we can rewrite Equation as

N
S(u, v) = Ao(u) + Z [Ay, (u) cos(nv) + By, (u) sin(nv)]
n=1
(3)
where N indicates the first N ”radii” with

Ao(u) = ago + ao1u + agpu® + agzu® (4)

anu —anu anu

®)

Ap(u) = ap1e™™ + angue™™ + apge + apaue”

Bn(u) = b1 €M b oue™ 4 by ze " 4 h, que” (6)

The PDE coefficients agg, ag1, - - -, @n3, ang and byq,
b12,. . . ,bns, byg are determined by Fourier-analysing the
PDE boundary conditions imposed on Equation .
The boundary conditions take the following forms:

5(0, v) = Co(v) (7)

S(u1, v) = C1(v) (8)
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(a)

(e) ()

Fig. 1 Patch merging illustration of position fixers adopted
in [32] and our new global triangulation scheme

S(ug, v) = Ca(v) 9)

S(1, v) = Gy(v) (10)
Co(v), C1(v), Ca(v), C3(v) represent the boundary con-
ditions when u = 0, uy, ug, and 1, respectively, and
0<u <ug <L

For each PDE patch, the number of sampling points
in the uv domain determines its level of detail (LOD).
Different LODs can be obtained by adjusting the gran-
ularity of the uv grid without changing the number of
PDE coefficients used in generation. Generally speak-
ing, the denser the granularity, the more details the
PDE patch can retain.

3.2 Patch Merging

Since Equation is used to approximate Equation
, this approximation introduces visible distortions
on the boundaries of generated PDE patches, resulting
in either overlaps or seams between the patches. In or-
der to avoid this problem, [32] introduced a group of
position fixers. The use of fixers can avoid generation
of T-junctions between adjacent patches and blend the
patches together seamlessly.

Although the above blending scheme can achieve
satisfactory results, there still exist some problems: (1)
Selection of the position fixers relies on manual work,

making it inefficient and inconvenient for practical ap-
plications, such as compression and filtering. (2) Posi-
tion fixers need extra storage space and increase the
data size in geometry representation. (3) The resolu-
tion of each PDE patch must remain identical. Fig.
a) shows two patches in an identical resolution and
Fig. (b) shows the result of patch merging using the
scheme in [32], where five red dots are the position fix-
ers used. When the resolution of the patch is different
(Fig.[[{c)), the merging result produced by the position
fixers is undesired, as shown in Fig. d)7 junctions 1’
and 2’ appear unstable.

To address these problems, we propose a new merg-
ing scheme based on point cloud. Specifically speaking,
the vertexes of each PDE patch are first computed using
the uv grid designed in [32], but without its connectivi-
ty information. This means that in the new scheme, all
the reconstructed PDE patches containing only vertex-
es are merged into one model in terms of point cloud.
A final mesh can then be obtained by triangulating the
PDE point cloud with any existing algorithm. In this
paper, we employ the ball pivoting algorithm [2] in pro-
gressive mesh compression and Poisson surface recon-
struction [23] in mesh denoising according to their spe-
cialities. We call the new scheme global triangulation,
different from the local one previously introduced in
[32]. This global triangulation scheme enables different
patches with any resolutions to be seamlessly blended
together, avoiding the manual intervention as well as
the extra storage cost introduced by the position fix-
ers. Fig. [Je) and Fig. [I[f) show such an example of
merging two patches in different resolutions with the
new scheme. Fig. [I[e) and Fig.[Jc) have the same ver-
tex information, but different topologies. It can be seen
that the topology of Fig. (f) is more reasonable than
that of Fig. [[}c).

4 Mesh Preprocessing

Before PDE patch generation, a mesh model needs to
be preprocessed with mesh partitioning and boundary
extraction. Mesh partitioning disparts the input mesh
into a number of patches, each of which corresponds
to one PDE. For each patch, four boundary condition-
s are subsequently extracted. In this section we intro-
duce the new mesh partitioning and boundary extrac-
tion schemes.

4.1 Mesh Partitioning

In [32], mesh simplification was used to guide partition-
ing a mesh model, where a high-resolution triangular
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(b)

Fig. 2 (a) A result of 160 patches partitioned by MeTiS. (b)
Tllustration of the extracted boundary conditions. ¢ and d are
extracted as boundary vertexes because they are closest to the
one-third and two-thirds trisecting points on the geodesic line
between a and b

mesh was simplified to a user-specified resolution, and
then this simplified mesh was used as reference to guide
partitioning the original mesh. Thus, the PDE patch-
es in [32] were decided by the mesh simplification ap-
proach adopted rather than the geometric mesh itself.
If the simplification approach adopted gave no consid-
eration to the geometric detail of the original shape, it
would lead to a severe loss of original mesh information
after PDE reconstruction. To this end, we have to find
a new segmentation method.

The existing mesh segmentation approaches can be
divided into part-type segmentation and surface-type
segmentation [3I]. Part-type segmentation is based on
human perception and focuses on partitioning the mesh

into meaningful 3D volumetric components, while surface-

type segmentation uses surface geometric properties of
the mesh, such as curvature and planarity, to dispart
the mesh into surface patches. Topologically, part-type
segmentation cannot guarantee segmented parts a home-
omorphism, while patches segmented by surface-type
methods are topologically equivalent to a disk. There-
fore, a surface-type method should be adopted here due
to the use of PPDE.

Ideally, we hope to partition a mesh into fewer patch-
es for a smooth region while more patches for a de-
tailed region. Nevertheless this ideal partitioning result
is hardly achieved by the existing surface-type methods
due to geometry uncertainty. Even for those geometry-
aware surface-type methods, segmentation results may
suffer from scale disparity, oversensitivity to local de-
tails, or even topology variation, etc. Therefore, rather

number of vertices. Figa) shows the partitions gen-
erated by MeTiS for the Stanford bunny.

4.2 Boundary Extraction

In our method four boundary curves are extracted from
each patch after MeTiS partitioning. We first calculate
the average position of all the vertexes of each patch,
and then select the vertex closest to the average posi-
tion as the first boundary condition of this patch, i.e.
the innermost boundary condition. Next, the outermost
vertexes of the patch are extracted as the fourth bound-
ary condition. In order to precisely approximate the
patch with complex geometry, all the outermost ver-
texes of the patch are used in PDE patch generation.
After obtaining the fourth boundary condition, corre-
sponding geodesic lines between the vertexes on the first
and fourth boundaries are calculated, and the second
and third boundary conditions are in turn extracted
by collecting the vertexes closest to the one-third and
two-thirds trisecting points on the geodesic lines.

Note that our boundary extraction scheme differ-
s from the one used in [32], which was tailored for
triangle-shaped PDE patches. In [32], the corner points
of each triangle-shaped patch are first located after sim-
plifying the original mesh, and then the remaining points
on the boundary curves are selected by seeking the ver-
texes in the original mesh closest to the triangular edges
of the simplified mesh. Since a fixed number of bound-
ary points are required, if vertexes on the original mesh
are insufficient to select, then interpolation is carried
out. There is one complication that the vertexes ob-
tained by interpolation may not locate in the original
mesh, resulting in some distorted details. Instead of in-
terpolation, if the vertexes are insufficient for the second
and third boundaries, the boundary extraction method
in this paper allows the same vertex to be selected more
than once, guaranteeing that all the boundary points
originate from the mesh vertexes. Fig. 2(b) shows an
example of boundary extraction of an arbitrary patch
using our method, where the vertexes for the second
boundary are insufficient to select. The vertex indicat-
ed by alphabet c is selected twice because it is the ver-
tex closest to the one-third trisecting points of both the
geodesic lines linking ¢ and b, and a and e.

than using a geometry-aware method, we resort to topology-

friendly software MeTiS [22] in this paper. In [20], the
effectiveness and feasibility of MeTiS have been demon-
strated for a spectral mesh compression method. Com-
pared with the simplification scheme adopted in [32],
patches segmented by MeTiS retain both the geometry
and topology of the original mesh and have the same

5 Progressive Mesh Compression

After mesh partitioning and boundary extraction, we
are ready for progressive mesh compression. In pro-
gressive mesh compression a coarse 3D mesh is first
transmitted in lower precision and then decompressed
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Fig. 3 The pipeline of progressive compression

at the receiving end. With more geometric information
sent from the transmitting end and subsequently de-
compressed at the receiving end, the coarse mesh will
be gradually refined to restore the original model. In
the PPDE method, the PDE coefficients are resolved
by imposing Fourier-analysis on the boundary condi-
tions. Fourier analysis copes with the mesh data in the
frequency domain. According to the spectral character-
istic that low-frequency components contribute more to
the reconstructed mesh than the high-frequency ones,
we can obtain a coarse model of the original mesh with
its basic geometric structure by transmitting only the
coefficients of Ag(u) in Equation (3)), i.e., ago, ao1, a2,
and ap3z, and then refine the coarse mesh with the re-
ceived coefficients of the following N "radius” terms,
ie., a11,G12,..., an3, Gng and by, b12,..., bn3, bpg. We
divide our progressive mesh compression scheme in-
to progressive compression and progressive decompres-
sion.

Progressive Compression: Our progressive com-
pression procedure is composed of five stages and il-
lustrated in Fig[3] An input mesh model is first parti-
tioned into a number of patches with MeTiS, and for
each patch four boundary conditions are then extract-
ed. The corresponding PDE coefficients of each patch
can be calculated by imposing Fourier analysis on its
four boundary conditions. In this paper, each PDE coef-
ficient is empirically quantized to 15 bits, and the total
quantity of PDE coefficients is 12 x (2N + 1) for each
patch. Using the Lempel-Ziv-Markov chain algorithm
(LZMA), we can in turn encode the PDE coefficients
from low-frequency to high-frequency.

Progressive Decompression: Our progressive de-
compression process is composed of three stages and
shown in Fig[d] During decompression, the low-frequency
coefficients are first downloaded and decoded so that
a coarse mesh can be reconstructed using the PPDE
method. With the higher frequency coefficients received,
more geometric details of the original mesh are recov-
ered. Note that our method first renders the model into
a point cloud, before this point cloud model is triangu-
lated using the ball-pivoting algorithm [2] for its low
computational complexity.

Frequency terms
|mmmmm—————— e meea
n=0 | 0011111010000101 : | 0.259766 0.222656 ... |
.-
|m- === - == Decoding I———=—-==-==-==
n=1 1 0011111001100110... | | 0.224609 0.218750 ... !
|m———— - [ i
n=N | 0011110001110110... : | 0.015015 0.259766... 1
————————————————————— 1
E\@/ PDE patch
@ Merging generation

Fig. 4 The pipeline of progressive decompression

6 Mesh Denoising

Raw mesh data acquired from scanning devices inevitably
contain noise, and thus, mesh denoising algorithms are
required ahead of any further mesh process. In im-
age processing, the Fourier transform has been wide-
ly used in transforming an image from its spatial do-
main into its frequency domain. However, the image
domain is regularly sampled, while 3D geometric mesh-
es are not. Therefore, it is difficult to directly apply
the Fourier transform to mesh signal. Previously, we
have demonstrated that a 3D model can be reconstruct-
ed with the PPDE method by manipulating frequency
coefficients of the Fourier series expansion. Likewise,
we can take advantage of the spectral nature of the
PPDE method to achieve a low-pass filter by retain-
ing the low-frequency coeflicients while discarding the
high-frequency ones.

Fig[5]shows the pipeline of our denoising scheme us-
ing the PPDE method. An input mesh with noise is first
partitioned into a number of patches. For each noised
patch, four boundary conditions are extracted and the
corresponding PDE coeflicients are calculated by Fouri-
er analysis. Preceding the generation of point cloud of
the PDE patches, low-pass filtering is carried out. In
the frequency domain, low-frequency components cor-
respond to the basic geometric structure of the model,
while the high-frequency ones define geometric details
of the model, such as bumps and noise. Thus, by keep-
ing the PDE coefficients of first N ”radius” terms while
discarding those of the rest ”radii”, a result of low-pass
filtering can be obtained after merging the patches. Our
scheme also allows for iterative filtering if the denoising
result of one iteration is unsatisfactory.

Note that instead of using the ball pivoting algorith-
m, we adopt the Poisson surface reconstruction algo-
rithm for triangulation mainly because of the smooth-
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Fig. 5 The pipeline of our denoising scheme

ness it lends, which makes the Poisson algorithm ideal
for low-pass filtering.

7 Experimental Results

In this section, we experimentally assess the perfor-
mance of our methods introduced in this paper against
the existing methods whose codes are publicly avail-
able. Fig[f]shows five typical mesh models tested in our
experiments, featuring various characteristics including
smooth surface as well as sharp edges, etc.

7.1 Progressive Mesh Compression Evaluations

We assess our compression method by comparing it
with one spatial and one spectral progressive mesh com-
pression methods. Fig[7}[I1] shows the rate-distortion
curves of the Wavemesh algorithm [38], RDO algorith-
m [26], and ours for the testing mesh models, where
the horizontal axes indicate compression rates while
the vertical axes indicate the corresponding Root Mean
Square (RMS) errors evaluated by METRO [9], mea-
suring how close a reconstructed mesh is to the origi-
nal. When the compression rate keeps unchanged, the
smaller the RMS error, the better the compression per-
formance. When the RMS error remains the same, the
lower the compression rate, the better the compression
performance. All the corresponding coefficients and ver-
texes in these three algorithms are empirically quan-
tized with 15 bits.

In our method, there are three variables, N, M, and
L, to be decided beforehand. N determines the num-
ber of PDE coefficients used during reconstruction; M
denotes the number of patches partitioned by MeTiS;
L indicates the number of isoparm triangle layers in
the wv grid [32], determining the LOD of reconstructed
patches.

For the sake of visibility, we compare the three algo-
rithms within a specified range in Fig[7[I1] The nodes,
from left to right, of the polylines of our scheme in

0.14 T T T T T T
—4%— Ours(M=25,L=3)
—+— Ours(M=25,L=4)
0.12 —e—Ours(M=40,L=4) | 4
- Wavemesh
&~ RDO
0.1F 4
5 0.08 1
fin]
(2]
=
@ 0.06f 4
0.04 1
0.02 1
% b 7

Compression Rate (bits per vertex)

Fig. 7 The rate-distortion curves of the sphere model

Fig[T11] correspond to the results when the value of N
increases from 0 to 6. It can be observed that the value
of N determines how close the reconstructed mesh is to
the original one. The larger the value of N, the small-
er the RMS error, the closer the reconstructed mesh to
the original. However, the increase of N will enlarge the
compression rate. Note that for the sake of comparison,
we visualize all the possible nodes generated by the t-
wo competing algorithms within the specified ranges in
Fig[T11] which correspond to different levels of detail

with variant vertexes.

The patch number M also influences the compres-
sion results. It can be observed in Fig[fI1] that with N
fixed, the larger the value of M, the smaller the RMS
error, i.e. the more details the reconstructed mesh can
preserve, but this may lead to an increase in compres-
sion rate. Therefore, in practical use we should choose
an appropriate M for a trade-off between the compres-
sion rate and RMS error.

In addition, the resolution of the uv parametric grid
also influences the reconstruction precision. It can be
observed in Fig[7{I]] that with both M and N fixed,
the larger the value of L, the smaller the RMS error,
but the compression rates remain unchanged.

As can be seen, our method achieves better perfor-
mances than the RDO algorithm between the ranges
indicated by the alphabets a and b in Fig[7{I0] Our
method can also achieve better performances than the
Wavemesh algorithm between the indicated ranges in
FigR10l In Fig[TT] both the Wavemesh and RDO al-
gorithms perform better than ours because the parti-
tioning method used in this paper is insensitive to the
model with sharp edges.
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Fig. 6 The mesh models used in our experiments. From left to right are the sphere model, Stanford bunny, Venus, Fandisk,
and hand model

We also observe from Fig[7T1] that when the com- 0.03 : :

. . —%— Ours (M=150,L=3)
pression rate is greater than b, the RMS error keep- —— Ours (M=150,L=4)
s decreasing for the Wavemesh and RDO algorithms, 0.025} —e—Ours (M=200,L=4) ||

.. = Wavemesh
but almost unchanged for our scheme. This is because - RDO
both the Wavemesh and RDO algorithms are lossless, 002k i

and more geometric details can be recovered by the two

s
algorithms as more bits are used. By contrast, the im- 5 o015l |
. ] W,
pact of high-frequency components after some ”radius” 2
terms in our PDE method is too weak to be observed. 001l |
0.025 T T 0.005 1 b
—¥— Ours (M=140,L=3) ;
—— Ours (M=140,L=4) T Tl
—e—Ours (M=160,L=4) 0 i . ) : s
0.02- - \Wavemesh 7 0 0.5a 1 15 2 b 25 3
“& RDO Compression Rate (bits per vertex)
0015 Fig. 9 The rate-distortion curves of Venus
s | |
5"3 " 0.04 : : : : : : : :
b= —#— Ours (M=100,L=3)
001+ . 0.0351 ——Ours (M=100,L=4) | |
: —e— Ours (M=150,L=4)
- \Wavemesh
0.005} : .
: 0.025}
0 1 i 1 1 1 Il 1 §
0 1 a2 3 4 5 b 6 7 W g0ol
Compression Rate (bit per vertex) g
x
Fig. 8 The rate-distortion curves of the Bunny 0.015f
0.01}
0.005}
7.2 Mesh Denoising Evaluations ;
) ) o ) % 2 a4 6 8 10 12 ph 14 16 18
In this section, we compare our denoising scheme with Compression Rate (bit per vertex)

some existing methods, such as FDCO mv JDD HIQL Fig. 10 The rate-distortion curves of the hand model
SRML M], local ZFAT @], ZDZBL [43], and LCS [16].

Each of the above methods involves a set of parameters
to be set by the user, and the best parameters may vary
from model to model. For a fair comparison, we choose
the best result for each method by sampling parame-
ters. Similarly, we need to set parameters properly in
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0.25 : : : T .+ OL;rS (M=56,L=3) Table 1 The parameters adopted by our algorithm in Fig
—+— Ours (M=50,L=4)
—&—Ours (M=70,L=4) . . . Parameters
0.2 o Wavemesh g The intensity of noise og M TN T T
0 RDO 02 300 | 5|3 |2
0.4 300 | 6 | 3| 2
5 0151 1 0.6 300 | 6 | 3|2
g 0.8 300 | 6 3|2
E ol ]
Table 2 The iterations required by variant algorithms in
Fig[[
0.0s}
og | Algorithms Iterations
1 1 1 1 1 1 1 1 FDCO 40
% 2 4 6 8 10 12 14 16 18 [[JDD]] -
Compression Rate (bits per vertex)
Niter Viter
Fig. 11 The rate-distortion curves of the Fandisk [SRML] 5 20
Niter Viter
02 | AT —ETg
our scheme to produce desired results. In our scheme, [ZDZBL] | Titer | Viter
we are concerned with four parameters, M, N, L, and - 4 1)15
. . . . . iter iter
I, where I indicates the number of filtering iterations. [LCS] 5 10
In order to test the denoising effect, Gaussian noise Ours 2
is applied to both mesh normal and random directions. [(FDCO] 40
As same as [43], the intensity of Gaussian noise in this [JDD] —
. . . iter iter
paper is controlled by a relative variance parameter, [SRML] 30 0
defined as Niter | Viter
0.4 [2FAT] 10 20
o
o — 11 7D7ZBL Niter Viter
¥ Emean 1 [ 1 B
) ) . ) [LCS] Niter Viter
where o is the variance of the Gaussian function, and 7 15
Enean is the average edge length of a mesh. [FODlgi)] 820
We first evaluate the robustness of variant denois- [IDD] —
ing methods against Gaussian noise with an increas- [SRML] Niter | Viter
ingly growing intensity, as shown in Fig[T2] The Stan- 50 50
ford bunny is degraded by adding Gaussian noise to its 0.6 [ZFAT] n’fg’" v’ZST
vertexes along the vertex normals. When the intensity ' o o
. . . . [ZDZBL] iter iter
of noise is low, all the seven denoising algorithms can 4 15
achieve desired subjective results. However, as the noise [LCS] Niter | Viter
intensity increases, the denoising results of the FDCO, Ours 10 5 15
JDD, SRML and ZFAT algorithms become worse and [FDCO] 50
worse, while ZDZBL, LCS and our algorithms can shake [JDD] -
off the impact of the growing noise intensity. The pa- [SRML] Niter | Viter
rameter values of our algorithm adopted in Fig[I2] are 100 100
. . Niter Viter
listed in Table [1 08 [ZFAT] 50 50
Table [2] shows the iteration numbers performed by [ZDZBL) Niter | Viter
the seven competing denoising algorithms in FiglT2] 20 10
where n;;e denotes the number of normal iterations, [LCS] niltO" Uiztgr
and v;te, indicates the number of vertex iterations. It Ours 2

is observed that to depress the impact of the growing
noise intensity the five competing algorithms have had
to increase the iteration number, except the JDD algo-
rithm that is independent of iteration. By contrast, our
algorithm can generate desired denoising results with
only two iterations.
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A{i“'
Noised [SRML]

[ZFAT] [ZDZBL] \[LCS]

Ours

Fig. 12 A subjective comparison of the denoising algorithms for the Stanford bunny with additive Gaussian noise of various
intensities along the normal directions. The intensity o of noise from top to bottom are in turn set to 0.2, 0.4, 0.6, and 0.8

Fig[T3|and Fig[T4]show denoising performance com-
parisons between our algorithm and the competing ones
on variant models whose geometric details from top to
bottom become sharper and sharper. Especially, the
model Fandisk contains clear edges. Fig[I3] shows the
results for the Gaussian noise added along the normal
directions. For the sphere, Venus, and hand models all
the seven algorithms can achieve subjectively accepted
denoising results. For the Fandisk, the FDCO and JDD
algorithms cannot completely filter out the noise; the S-
RML and ZFAT algorithms produce incorrect normals;
our algorithm fails to reserve the sharp edges mainly be-
cause our spectral method can hardly distinguish noise
and sharp geometric detail and MeTiS is insensitive to
geometry; ZDZBL and LCS algorithms can achieve de-
sired subjective results. Fig[T4] shows the denoising re-
sults for the Gaussian noise added along random direc-
tions. As can be seen, the FDCO algorithm does not
completely filter out the noise for all the mesh models.
The other six denoising algorithms can produce subjec-
tively accepted denoising results for the first three mesh
models, but not for the Fandisk and hand model except
the LCS algorithm. JDD, SRML, ZFAT and ZDZBL al-
gorithms produce incorrect normals; our algorithm can
produce desired denoising result for the hand model,

but not for the Fandisk. Note that since our denoising
scheme relies on discarding high-frequency components
of the mesh, some geometric detail will be inevitably
removed along with noise. Such impacts can be seen
in the face of the Venus, as well as the edges of the
Fandisk. The parameters of our algorithm adopted in

Fig[13] and Fig[l4] are listed in Table

Fig. [L5] shows a further comparison of denoising al-
gorithms on the models with a higher level of noise
added along random directions. As can be seen, FD-
CO, JDD, SRML, ZFAT, and ZDZBL algorithms fail
to achieve accepted denoising results for all the mesh
models. LCS and our algorithms can produce subjec-
tively accepted denosing results for all the mesh model-
s, except our algorithm fails to reserve the sharp edges
of the Fandisk.

Since error metrics, such as the RMS, max, mean,
and Hausdorff distances are based on correspondences
of vertexes, edges, and similar triangles faces, and there
is no such one-to-one correspondence in our method
between the denoised and the original, an objective as-
sessment for our method may not reflect the reality.
For instance, in Fig[14] the denoising result of our algo-
rithm for Venus is visually better than that of FDCO,
and FDCO even fails to filter out the noise of Venus.
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Table 3 The parameters adopted by our algorithm in Fig
and Fig[T4]

. Parameters
Figures | Models N NTL T
Sphere | 500 | 1 | 2 | 4
. Venus 500 | 6 3|1
Figlld sk T200 T2 T2 2
Hand 300 | 3 | 3|2
Sphere | 500 | 1 | 2 | 3
Bunny | 400 | 6 | 3 | 1
Fig[ld] [ Venus [ 500 | 6 [ 4 | 1
Fandisk | 200 5 2 2
Hand 300 | 5 3|2

Nonetheless, the RMS, max, mean, and Hausdorff dis-
tances of FDCO for Venus are smaller than ours, which
is, however, against the reality. Therefore, in this paper
the denoising results are not assessed by the error met-
rics.

8 Concluding Remarks

The feasibility of the PDE method in 3D mesh signal
processing is explored for the first time in this paper. To
accommodate progressive mesh compression and mesh
denoising, we upgrade the existing PPDE method in
patch merging, mesh partitioning, and boundary ex-
traction. Although our primary goal is not to develop
a progressive mesh compression algorithm or mesh de-
noising algorithm excelling the extant ones, the experi-
ments have demonstrated the advantages of our method
to some extent.

Our denoising algorithm is performed in the spectral
domain. One disadvantage of spectral methods is that
they can hardly distinguish noise and geometric detail-
s of a model in the spectral domain. Thus the spectral
denoising method will inevitably trade off some geomet-
ric details of the original mesh during denoising, result-
ing in over-smoothing. For example, in both Fig[I3]and
Fig[T4] our denoising algorithm fails to restore some de-
tails in the face of the Venus, nor the sharp edges of the
Fandisk.

This paper also opens some windows for further re-
search. For example, in progressive mesh compression,
apart from the quantity of frequency terms, the patch
number M also influences the compression rate and re-
construction precision of our method. This means that
to achieve a small compression rate we can partition the
mesh into a small number of patches, but this may lead
to unprecise reconstruction. However, we need to seek a
trade-off between the compression rate and RMS error
by properly selecting an optimal M, and to seek a way

of replacing manual setting, which are yet to be stud-
ied in the future. Moreover, we adopt topology-friendly
MeTiS in this paper to segment the mesh model into
patches with an identical number of vertexes, which is,
however, geometry-insensitive. Since desirable proper-
ties of a surface-type segmentation method may vary
according to the specific application, it would be better
in the future to develop our own geometry-aware seg-
mentation algorithm for this specific application, which
should enable a planar region to possess larger patch-
es and a detailed region to possess smaller patches,
and meanwhile, should be robust enough against scale
disparity, oversensitivity, and topology variation that
the existing surface-type geometry aware algorithms are
facing.

Note that both our progressive mesh compression
scheme and mesh denoising scheme currently work on-
ly for genus-0 models. This is determined by our patch
merging scheme, where the point cloud is directly trian-
gulated to achieve seamless blending of PDE patches.
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