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Abstract Anomaly detection is a fundamental task for
time series analytics with important implications for the
downstream performance of many applications. Despite
increasing academic interest and the large number of
methods proposed in the literature, recent benchmarks
and evaluation studies demonstrated that no overall best
anomaly detection methods exist when applied to very
heterogeneous time series datasets. Therefore, the only
scalable and viable solution to solve anomaly detection
over very di erent time series collected from diverse
domains is to propose a model selection method that
will select, based on time series characteristics, the best
anomaly detection methods to run. Existing AutoML
solutions are, unfortunately, not directly applicable to
time series anomaly detection, and no evaluation of time

series-based approaches for model selection exists. To-

wards that direction, this paper studies the performance
of time series classi cation methods used as model se-
lection for anomaly detection. In total, we evaluate 234
model con gurations derived from 16 base classiers
across more than 1980 time series, and we propose the
rst extensive experimental evaluation of time series
classi cation as model selection for anomaly detection.
Our results demonstrate that model selection methods
outperform every single anomaly detection method while
being in the same order of magnitude regarding execu-
tion time. This evaluation is the rst step to demonstrate
the accuracy and e ciency of time series classi cation al-
gorithms for anomaly detection, and represents a strong
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Fig. 1 Summary of our evaluation on the TSB-UAD bench-
mark [75] of model selection methods (best for k = 1 in blue
and k =4 in green) when compared to 12 anomaly detection
methods and the Avg Ens (in orange).

baseline that can then be used to guide the model selec-
tion step in general AutoML pipelines. Preprint version
of an article accepted at the VLDB Journal.

Keywords Time Series Anomaly Detection Model
Selection Machine Learning

1 Introduction

Extensive collections of time-dependent measurements
are a reality in every scientic domain [71,61]. The
recording of these measurements results in an ordered
sequence of real-valued data points, commonly referred
to as time series [74,10,73]. Analyzing time series is be-
coming increasingly important in virtually every domain,
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including astronomy [48], biology [9], economics [63],
energy sciences [7], engineering [89], environmental sci-

among models, which is not applicable to anomaly detec-
tion methods; (ii) a prede ned set of features, which is

ences [40], medicine [78], neuroscience [13], and socialdi cult to obtain for time series due to varying lengths

sciences [26]. Anomaly Detection (AD), in particular,
has received ample academic and industrial attention [70,
37], and has become a signi cant problem that nds
applications across a wide range of domains and sit-
uations. These applications share the same goal [11,
86,96]: analyzing time series to identify observations
that do not correspond to an expected behavior inferred
from previously observed data. In practice, anomalies
can correspond to [2]: (i) noise or erroneous data (e.g.,
broken sensors); or (ii) actual data of interest (e.g., ab-
normal behavior of the observed system). In both cases,
detecting such types is crucial for many applications [6,
44].

In recent years, many techniques have been proposed
for Time Series Anomaly Detection (TSAD). Multiple
surveys and benchmarks summarize and analyze the
state-of-the-art proposed methods [14,75,81,72,52,93,
57,51,55]. Such surveys and benchmarks provide a holis-
tic view of anomaly detection methods and how they
perform. Unfortunately, these benchmark and evalua-
tion studies demonstrated that no overall best anomaly
detection methods exist when applied to very hetero-
geneous time series (i.e., coming from very di erent
domains). In practice, we observe that some methods
outperform others on speci ¢ time series with either spe-
ci ¢ characteristics (e.g., stationary or non-stationary
time series) or anomalies (e.g., point-based or sequence-
based anomalies).

To overcome the above limitation, ensembling solu-
tions have been proposed [4] that involve running all
existing anomaly detection methods and averaging their
anomaly scores. Figure 1 shows that this solution (in
orange) outperforms all individual existing techniques
in the TSB-UAD benchmark (in grey) [75,20]. However,
as shown in Figure 1, such solutions require running all
methods, resulting in an excessive cost that is not feasi-
ble in practice. Additionally, blindly combining models
without considering their performances may lead to re-
duced accuracy compared to a combination of only the
top-performing detectors.

Therefore, the only scalable and viable solution for
solving anomaly detection over very di erent time series
collected from various domains is to propose a model
selection method that selects, based on time series char-
acteristics, the best anomaly detection methods to run.
This topic has been tackled in several recent research
works related to AutoML (Automated Machine Learn-
ing) for the general case of anomaly detection [101,98]
and also for time series [99,42]. Nevertheless, existing Au-
toML solutions require (i) a universal objective function

and the lack of standardized featurization solutions; (iii)
running multiple anomaly detection methods several
times, which is prohibitively expensive in practice; or
(iv) labeled anomalies, which (in contrast to classi -
cation tasks) are di cult to obtain. Therefore, more
work is needed in order to render AutoML solutions
applicable to TSAD.

The objective is to train a classi cation model on
time series for which we know in advance which anomaly
detection method is the best. However, the lack of a
benchmark with labeled time series has been a limiting
factor for training robust model selection models (this
only changed very recently [75,81,53]). Therefore, there
exists no experimental evaluation that measures the
e ectiveness of classi cation methods for the task of
model selection for TSAD. Thus, such an evaluation
is very important for determining which time series
classi cation methods are accurate as model selection
methods, and which solutions should be considered in
out-of-distribution settings (i.e., using model selection
approaches on time series from domains that were not
included in the training set). These results would help
the design and e ectiveness of general AutoML pipelines
for time series.

Accordingly, in this paper, we evaluate the perfor-
mance of time series classi cation methods used as model
selectors for TSAD. Rather than relying on a single de-
tector, we explore the bene ts of combining multiple
detectors per time series. Di erent anomaly detectors
tend to specialize in certain data characteristics, as some
detectors are better at capturing point anomalies, others
at detecting sequence anomalies. For example, in Fig-
ure 2 (a) we can see that NormA is undoubtedly better
than CNN on ECG data, which behavior is reversed on
the YAHOO dataset as shown in Figure 2 (d). Overall,
combining multiple detectors improves robustness, since
real-world time series often contain more than a single
type of anomalies.

Thus, we build a framework * capable of proposing
a single anomaly detector for a given time series, or a
weighted combination of multiple anomaly detectors. In
this framework we control the number of anomaly de-
tection methods combined by incorporating a dynamic
selection parameterk. By systematically adjusting the
value of k, that is the number of detectors to combine,
we study the trade-o between accuracy and runtime
performance, demonstrating how a weighted subset of
top-performing detectors enhances overall performance

1 A preliminary version of this work has appeared else-
where [87].
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without the high costs associated with running all de-
tectors. We evaluate the proposed pipeline in terms
of accuracy and execution time in two distinct experi-
mental settings: in-distribution and Out-Of-Distribution
(OOD). In the in-distribution setting, the model is eval-
uated on time series from known domains, whereas
in the OOD setting, the model is trained on multiple
datasets spanning various domains and tested on a held-
out dataset from a domain not seen during training (e.g.,
trained on electrocardiogram [67], tested on robotics sen-
sors measurements [79]). This OOD setting simulates
a scenario where the inference data is entirely unseen,
allowing us to assess the model’'s generalizability and
performance in transfer learning contexts.

Overall, we evaluate our framework on over 1980
time series and 12 anomaly detection methods from
the recent anomaly detection benchmark TSB-UAD.
To the best of our knowledge, our results demonstrate
the rst extended evaluation of time series classi cation
methods as model selectors for TSAD. More speci cally,
we provide evidence that combining multiple anomaly
detectors (k > 1) can signi cantly bene t the pipeline
over choosing only a single detector K = 1). Model
selectors with k > 1 surpass (i) all stand-alone anomaly
detection methods, (ii) the Averaging Ensemble (Avg
Ens), and (iii) all their single-detector counterparts with
k = 1. The bene ts are accentuated in the OOD setting
where single-detector model selectors do not perform
better than the naive Avg Ens, while multi-detector
model selectors can surpass the Avg Ens performance
while signi cantly reducing execution time. Figure 1
shows a summary of our experimental evaluation in the
in-distribution setting, where the best model selection
methods (shown in blue fork = 1 and green fork = 4)
are up to 2.3 more accurate than the best anomaly de-
tection method in the TSB-UAD benchmark and 1.9
more accurate than the ensembling solution mentioned
above. In the OOD setting, combining detectors provides
similar performance to the Avg Ens, while signi cantly
reducing execution time. This framework provides the
rst step to demonstrate the accuracy and e ciency of
time series classi cation algorithms for anomaly detec-
tion. It represents a strong baseline that can then be

used to guide the choice of approaches for the model se-

lection step in more general AutoML pipelines. Overall,
the paper is organized as follows:

{ We start with a detailed discussion of the relevant
background and related work for anomaly detection
in time series (Section 2).

{ We cast the model selection problem for TSAD meth-
ods into a time series classi cation problem. We de-
scribe and study the need to evaluate time series clas-
si cation methods for model selection (Section 3).

{ We introduce our pipeline for model selection ap-
plied to anomaly detection in time series. As this
pipeline is generic, we describe how it can be used
with both feature-based classi cation methods, tra-
ditional time series classi cation methods, and deep
learning-based methods (Section 4).

{ As multiple detectors can be selected by our pipeline,
we introduce two combination strategies. The rst
considers the prediction probabilities of the model
selection methods, and the second uses a voting
system across all the subsequences of the time series.
The probabilities or the number of votes are then
used to weight the detectors anomaly scores and
generate the nal anomaly score (Section 4).

{ We describe our experimental framework (on top
of TSB-UAD benchmark [75]), and provide details
on both anomaly detection methods and time series
classi cation methods considered in this paper (Sec-
tion 5). We make all our material publicly available
online [22] and provide an interactive Web applica-
tion [23] for exploring our results.

{ We present an extensive experimental evaluation,
measuring the anomaly detection accuracy and exe-
cution time (both training and inference) of model
selection algorithms (Section 5.2). We evaluate the
in uence of important parameters and the relation-
ship between classi cation and anomaly detection
accuracy (Sections 5.3, 5.4, and 5.6). Moreover, we
measure the transferability of model selection algo-
rithms to new types of time series by testing multiple
combinations of train and test datasets that do not
contain the same kinds of time series (Section 5.7).

{ Finally, we conclude with the implications of our
work and discuss possible future directions that could
help improve both the accuracy and the execution
time of our proposed pipeline (Section 6).

2 Background and Related Work

We rst introduce formal notations (Section 2.1), and
then review in detail existing TSAD methods (Sec-
tion 2.2) and discuss their limitations (Section 2.3).

2.1 Time Series and Anomaly Score Notations

Time Series: Atime series T 2 R" is a sequence of real-
valued numbersT; 2 R [Ty;To; 5 Tn], wheren = jTj is
the length of T, and T; is the i!" point of T. We are
typically interested in local regions of the time series,
known as subsequences. A subsequente 2 R of a
time seriesT is a continuous subset of the values oT
of length * starting at position i, formally de ned as
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Fig. 2 Accuracy of 12 detectors on 4 datasets.

Tie =[Ti;Tisr ;5 Ties 1. We then de ne a dataset D,
which is a set of time series. Note that the time series
contained in D can be of diverse lengths. We de ne the
size of D as jDj.

Anomaly Score Sequence: For a time series T 2
R", an AD method (or detector) D returns an anomaly
score sequencest. For point-based approaches (i.e.,
methods that return a score for each point), we have
St 2 R". For subsequence-based approaches (i.e., meth-
ods that return a score for each subsequence of a given
length *), we haveSt 2 R"™  andSt =[Sr1;St;::Srn:
with St; 2 [0;1]. In most applications, the anomaly
score has to be the same length as the time series. Thus,
for subsequence-based approaches, we de ne:

1)

[Stne 172 with S 1j=|Tj

where + denotes list concatenation, and X]=2 represents
a list containing the element x repeated ‘=2 times.

Anomaly Detection Accuracy: For a time series
T 2 R", an AD method (or detector) D returns an
anomaly score sequenc® (T) = Sy. The labelsL 2
[0; 1]" indicate with O or 1 if the pointsin T are normal or
abnormal, respectively. We de ne Acc: R" f 0;1g" !
[0; 1] as an accuracy function, for whichAcc(D(T);L),
namely the accuracy score, indicates how accurat® is
(i.e., producing an score close to 1 when the label is 1,
and close to 0 otherwise). The closer the accuracy score
is to one, the better the detector.

2.2 Anomaly Detection Methods for Time Series

Anomaly detection in time series is a crucial task for
many relevant applications. Therefore, several meth-
ods (for diverse types of time series, or applications)
have been proposed in the literature [17]. One type of
anomaly detection method is distance-based methods,
that analyze subsequences by utilizing distances to a
given model to detect anomalies. In this category, we can
identify three sub-categories. The rst is discord-based.
These methods focus on the analysis of subsequences
for the purpose of detecting anomalies in time series,
mainly by utilizing nearest neighbor distances among
subsequences [96,83,54,59]. The second sub-category is
proximity-based. These methods focus on estimating the
density of particular types of subsequences in order to
either extract a normal behavior or isolate anomalies.
Since a subsequence can be seen as a multidimensional
point (with the number of dimensions corresponding
to the subsequence length), general outlier detection
methods can be applied for TSAD [25,64].The last cat-
egory is clustering-based, that contains methods using
the distance to a given clustering partition to detect
anomalies. In this sub-category, NormA, that rst clus-
ters data to obtain the normal behavior [15,16,21] have
demonstrated strong performance.

While the previously mentioned methods compute
their anomaly score on distances with raw time series
element (such as subsequences), density-based methods
focus on detecting recurring or isolated behaviors by
evaluating the density of the points or subsequences into

speci ¢ representation space. This category can be di-
vided into four sub-categories, namely distribution-based,
graph-based, tree-based, and encoding-based. Among them,
Isolation Forest [60], a tree-based methods grouping
points or subsequences into dierent trees, and Se-
ries2Graph, a graph-based method that converts the
time series into a graph to facilitate the detection of
anomalies [19], have been shown to work particularly
well for TSAD task [19].

Furthermore, forecasting-based methods, such as re-
current neural network-based [65] or convolutional
network-based [68], have been proposed for this task.
These methods use the past values as input, predict
the following one, and use the forecasting error as an
anomaly score. Such methods are usually trained on
time series without anomalies, or make the assumption
that the anomalies are signi cantly less frequent than
the normal behaviors.

Finally, reconstruction-based methods, such as au-
toencoder approaches [80], are trained to reconstruct
the time series and use the reconstruction error as an
anomaly score. As both forecasting and reconstruction-



MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 5

based categories detect anomalies using prediction errors
(either forecasting or reconstruction error), we can group
them into prediction-based methods.

2.3 Limitations of Anomaly Detection Methods

Recently, several benchmarks and experimental evalu-
ations for anomaly detection in time series have been
proposed in the literature [81,72,53]. Such benchmarks
o er a comprehensive collection of time series from vari-
ous domains and evaluate multiple methods within the

categories mentioned above. However, these experimen-

tal evaluations led to the same conclusion: no method
exists that outperforms all the others on all time series
from various domains. Figure 2, which depicts the ac-
curacy of 12 diverse AD method$ on four time series
datasets, illustrates the conclusion above. In Figure 2
(a.2), NormA is the most accurate model on the ECG
dataset [67] (a time series example is depicted in Figure 2
(a.1)). However, Local Outlier Factor (LOF) [25], and
Matrix pro le (MP) [96] are signi cantly outperforming
NormA on the MGAB dataset [88] (see Figure 2 (b.2)),
whereas CNN [68] is outperforming NormA, LOF, and
MP on the YAHOO dataset [56] (see Figure 2 (d.2)).
The following two reasons explain this di erence in per-
formance among datasets.

2.3.1 Heterogeneity in anomaly types

First, there are three types of time series anomalies:
point, contextual, and collective anomalies. Point anoma-
lies refer to data points that deviate remarkably from
the rest of the data. Similarly, contextual anomalies
refer to data points within the expected range of the
distribution (in contrast to point anomalies) but deviate
from the expected data distribution, given a specic
context (e.g., a window). For instance, Figure 2 (d.1)
illustrates a subsequence from the YAHOO dataset with
contextual anomalies. The values of the anomalies fall
within the range of normal values, but are abnormal in
the context of the distribution of the surrounding points.
For these speci c types of anomalies, reconstruction and
forecasting-based methods are particularly accurate (as
shown in Figure 2 (d.2)).

Collective anomalies refer to sequences of points
that do not repeat a typical (previously observed) pat-
tern. The rst two categories, namely, point and contex-
tual anomalies, are referred to as point-based anomalies,

and (c.1) show three time series with sequence anoma-
lies. However, even for time series belonging to the same
anomaly type categories, we observe that the most ac-
curate models are all di erent.

2.3.2 Heterogeneity in time series structures

This diversity in model accuracy can be explained by
other factors related to the time series structures. In-
deed, on top of these categories mentioned above, the
combination of them also matters. First, we need to dif-
ferentiate time series containing single anomalies from
time series containing multiple anomalies. Then, the
multiple time series category has to be divided into two
subcategories, namely time series containing multiple
di erent and multiple similar anomalies. For instance,
methods based on neighbor distance computation such
as LOF are very accurate in detecting single or multiple
di erent anomalies, but less accurate for multiple simi-
lar. To illustrate this point, Figure 2 (a.2) depicts the
results of 12 AD methods on the ECG dataset (that con-
tains a large number of multiple similar anomalies), for
which LOF accuracy is low. On the contrary, Figure 2
(b.2) depicts the results of the same 12 AD methods
on the MGAB dataset (that contains multiple di erent
anomalies), for which LOF accuracy is high.

On top of the large variety of time series and anomaly
characteristics mentioned above, time series can have
distinct statistical characteristics, resulting in an even
larger variability in the accuracy of AD methods. The
latter can be the di erences between stationary (i.e.,
with a constant distribution of values over time) and
non-stationary (i.e., with a changing distribution of
values over time) time series, or single normality (i.e.,
time series containing only one normal behavior) and
multiple normalities (i.e., time series containing multiple
normal behaviors) time series.

3 Motivation and Problem

In this section, we describe solutions that can be applied
to solve the limitations mentioned above, and we moti-
vate the bene ts of these solutions. Finally, we formally
de ne the problem.

whereas collective anomalies are referred to as subse-3.1 Ensembling Detectors

gquence anomalies. For instance, Figure 2 (a.l), (b.1),

2 We use 12 methods that have been employed in previous
studies [75,72]. Note that other variations exist that may
lead to improved results.

The rst solution is to ensemble the anomaly scores
produced by all the detectors. Multiple ensembling tech-
niques have been proposed in the literature [4] from
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which three main methods arise: (i) Averaging: the aver-
age of the anomaly scores for each timestamp, (ii) Maxi-
mizing: the maximum anomaly score for each timestamp
(i) Average of Maximum: the average of the maximum
for a randomly selected subset of detectors. Averaging
strategy is proven to be the more robust and low-risk
strategy compared to the other two [4]. Formally, the
Averaging strategy is de ned as follows:

De nition 1 Given a time seriesT of length n and
a set of detectorsB, the anomaly score sequence pro-
duced by the Averaging strategy is de ned asAvgEns =
[Avgs; Avgy; i1 Avgn ] where eacE, elemeniAvg; (for i2
[1;n]) is equal to Avg = (1=Bj) g D(T)i.

In the rest of the paper, we call the Averaging strat-
egy Averaging Ensemble (Avg Ens). As depicted in Fig-
ure 1 (a), which shows the accuracy of detectors (in
grey) and the Avg Ens (in orange), we observe that
such a strategy already outperforms all existing ap-
proaches. Nonetheless, such a method requires running
all detectors to produce one ensembled anomaly score,
resulting in a costly execution time (see Figure 1 (b)). In
a scenario with very long time series and an increasing
number of detectors to consider, such an approach is
not sustainable and feasible in practice.

3.2 Model Selection

A solution to tackle the limitations mentioned above is
to apply model selection based on the characteristics
of the time series. The primary objective is to train a
model to automatically select the optimal combination of
detectors (AD methods) for a given time series. In such
a case, the user must run onlyk models  ranging from
1 to the total number of available detectors), drastically
reducing the execution time required (fork signi cantly
smaller than the total number of detectors). This allows
users to bene t from the robustness of combining the
complementary strengths of di erent detectors without
having to run all of them as in Avg Ens. The model
selectors predict the most relevant detectors based on
the time series characteristics and exclude the irrelevant
ones.

This topic has been tackled in several recent papers
related to AutoML (Automatic Machine Learning). Re-
cent approaches, such as MetaOD [101,99], explored
meta-learning to identify the best outlier detection algo-
rithm on tabular datasets. These research works rely on
the performance of pre-computed models on a subset of
datasets to learn a mapping from the dataset’s character-
istics to the detectors’ performance. Methods have been
proposed to select models in an unsupervised way [42],

but require running multiple models in advance, which
(as Avg Ens) limits the applicability due to high cost.

3.3 Classi cation for Model Selection

In general, for the speci c case of time series, most of
the work described above and future AutoML methods
will rely on time series classi cation methods for the
model selection step. In the simple case of model selec-
tion, where a single detector is predicted, the goal is to
classify the time series into classes corresponding to the
available AD methods. While this single-detector ap-
proach is su cient for datasets with heterogeneous time
series, it fails to capture the complementary strengths
of multiple detectors like Avg Ens. This limitation be-
comes patrticularly evident in complex time series with
multiple patterns and anomaly types, where no single
detector is consistently reliable. Thus, to combine mul-
tiple detectors, the probability distribution inherently
produced by the classi cation method is used as weights,
and a weighted average combines the output of the de-
tectors. However, no existing guidelines indicate which
time series classi cation approach can be used for model
selection. Thus, there is a need to evaluate and measure
the bene t that time series classi cation approaches can
bring to the anomaly detection task.

The rst step is to evaluate the potential gain in
accuracy that model selection could bring. To do this,
recent TSAD benchmarks [75,81] can be used. We can
evaluate the upper bound on the accuracy that model
selection could reach on such benchmarks. Thus, we
de ne a hypothetical model called Oracle, which, for a
given time series, always selects the single most accurate
anomaly detector to use.

Speci cally, the aforementioned benchmarks provide,
along with each time series, their ground-truth labels
and the anomaly scores produced by multiple detectors.
To compute the Oracle, we calculate the AUC-PR (Area
Under the Precision-Recall curve) between the labels
and each detector’'s anomaly score for each time series.
The Oracle then selects, for each time series, the detec-
tor that achieves the highest AUC-PR. This provides
a theoretical upper bound for model selection perfor-
mance, simulating the perfect model selector. We are
not creating a theoretical upper bound that combines
more than one detector, as theOracle already serves
the purpose su ciently (see Figure 1 (a)). Nonetheless,
we hope that in the future, this upper bound will be
surpassed and the need for another upper bound will
arise. Formally, Oracle is de ned as follows:

De nition 2 Given a datasetD composed of time se-
ries T and labels L (with the length of the time se-
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ries jTj = n non-constant for all time series in D),
and a set of detectorsB = fD 1;Dj;::;; Dy g with the
number of detectors de ned asjBj = m, Oracle(T) =
argmaxp,g  Acc D(T);L

We refer to Oracle, the hypothetical model Oracle(T),
as applied to all T in a given benchmark. For example,
Figure 1 shows in white the accuracy ofOracle applied
to the TSB-UAD benchmark [75] and demonstrates that
a perfect model selection method outperforms the best
detector in TSB-UAD and the Avg Ens by a factor of
3 and 2.5 accordingly. This large improvement in accu-
racy and execution time con rms the potential bene ts
of model selection applied to TSAD. Thus, there is a
need to evaluate the performance of existing time series
classi cation methods when used as model selection al-
gorithms and how close such methods can get to the
Oracle.

3.4 Problem Formulation

Therefore, based on the limitations and the motivation
listed above, we can formalize the problem of model
selection as follows:

Problem 1 Given a datasetD composed of time series
T (with the length of the time series jTj = n non-
constant for all time series inD) and a set of detectors
B = fD 1;Dy;::;;Dmg with the number of detectors
de ned as jBj = m. We want to build a model selection
method M that takes a time seriesT 2 D and returns
a set of weightsWt = fw; wy; ::;; wy g (formally M

R"™ 'R ™) such that the anomaly scoreSt is a weighted
combination of the scores from the detectors in B:

St = w;D;i(T); where wi =landw; O
i=1 i=1

For a given parameterk, which speci es the nhumber of
detectors to combine,M will ensure that only k out of
the m weights are non-zero. The goal is to maximize
the accuracy of the combined anomaly scoré&y with
respect to the label L:

X0
w;iD;(T); L

M(T) =argmax Acc
Wr i=1

In practice, we do not have the labelL. Therefore,
the objective is to build a model M that estimates
the equation above. Moreover, as the input ofM is
a time series and the output is a set of weights for
the detectors in B, the problem can be seen as a time
series classi cation problem for which the classes are the
detectors in B and the set of weights is the produced

probability distribution over the classes. Thus, the only
requirement is to have computed allAcc(D(T); L) for
all T 2D and all D 2 B and use it as a training set.

3.5 Objectives

In summary, our goal is to answer the following ques-
tions:

{ Classi cation as Model selection: How do clas-
si cation methods compare to individual detectors
and the Oracle?

{ Single vs. multiple detectors: Is combining mul-

tiple detectors (i.e., k > 1) better than selecting a

single best one?

Ensembling or selecting: Is selecting k detectors

automatically more accurate than ensembling them?

How large k should be to outperform ensembling?

{ Features or Raw values: Should we use time series
features or the raw time series values to predict which
detectors to use?

{ Out-Of-Distribution: What happens when the
model selection approach is trained on some datasets
and tested on entirely new ones? Are the answers
from the previous questions still valid?

—~

We now describe our pipeline and experimental evalua-
tion to answer the questions listed above.

4 MSAD: Proposed Pipeline

In the following section, we provide a comprehensive
explanation of the proposed pipeline. This pipeline in-
volves a sequence of preprocessing and postprocessing
steps to ensure that the inputs to the model selection
algorithms are of equal length. The proposed pipeline,
illustrated in Figure 3, consists of the following steps:
(i) Preprocessing step: Extraction of subsequences of
the same length (Figure 3 (b)), (ii) Prediction step:
Producing the probability distribution over the avail-
able classes for each subsequence (Figure 3 (c)), and
(iii) Combination step: Transforming the probability
distributions into a sequence of weights (Figure 3 (d)),
one for each class, and combining the scores from indi-
vidual detectors according to these weights (Figure 3
(f)). In the following section, we describe the three steps
mentioned above in detail.

4.1 Preprocessing Step

Time series classi cation can be performed with three
di erent strategies: (i) treating the entire time series as
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Fig. 3 Proposed pipeline for the method selection

one sample, (ii) dividing the time series into overlapping
subsequences, (iii) dividing the time series into shifting

subsequences (i.e., non-overlapping subsequences). The

rst strategy is straightforward, as each time series is
treated as a single observation. Nevertheless, not all
classi ers can handle variable-length inputs, and train-
ing such models can be computationally intensive (i.e.,
batches of time series cannot be treated in parallel). The
second strategy involves dividing the time series into
overlapping subsequences (of a given window length).
Despite possible loss of information, it forces each input
of the methods to be the same length (), allowing sim-
pler and faster computation when performed in parallel.
In the third strategy, we divide time series into non-
overlapping subsequences (of a given length), removing
redundant information in overlapping subsequences. The
latter might lead to separate anomalies into multiple
windows, but signi cantly reduces the number of inputs
generated by the second strategy and signi cantly accel-
erates the training and inference time. For these reasons,
we chose the third strategy.

Thus, the time series of lengthjTj are divided into
T, non-overlapping subsequences of length When the
length of the time series is not divided evenly by the

window length *, the remainder is added with an overlap
between the rst two windows. Formally:

ngit;‘ ji2[0;n]g; ifjTjmod ‘=0
T =
T fTo 9l Tirjnwis i2[0; n 1] ;otherwise
I m
with n= L 1. We expect the length* to have

an impact on the anomaly detection accuracy. We thus
test multiple length values and measure their in uence
(on accuracy and execution time) in Section 5.

At this point, we preprocessed the time series into
subsequences of equal length. We now discuss the la-
bel (i.e., the best detector to apply) attribution. For
that matter, we use the TSB-UAD benchmark [75] that
contains 12 di erent AD methods. We compute the 12
methods for each time series and attribute the most ac-
curate (based on AUC-PR) detector as the label. Then,
the produced subsequences share the same label as the
time series they originate from. This design choice aims
to learn global signal characteristics, rather than lo-
calized anomaly behavior, which we found to result in
better classi er performance. We experimented with
assigning di erent labels per subsequence, but this led
to signi cantly worse results and was also challenging
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Table 1 Summary of datasets, methods, and measures used in this experimental evaluation.

Datasets Description
Dodgers [50] unusual tra ¢ after a Dodgers game (1 time series)
ECG [67] standard electrocardiogram dataset (52 time series)
I0PS [1] performance indicators of a machine (58 time series)
KDD21 [53] composite dataset released in a recent SIGKDD 2021 (250 time series)
MGAB [88] Mackey-Glass time series with non-trivial anomalies (10 time series)
NAB [5] Web-related real-world and arti cial time series (58 time series)
SensorScope [95] environmental data (23 time series)
YAHOO [56] time series based on Yahoo production systems (367 time series)
Daphnet [8] acceleration sensors on Parkinson’s disease patients (45 time series)
GHL [35] Gasoil Heating Loop telemetry (126 time series)
Genesis [12] portable pick-and-place demonstrator (6 time series)
MITDB [67] ambulatory ECG recordings (32 time series)

OPPORTUNITY [79]

motion sensors for human activity recognition (465 time series)

Occupancy [27]

temperature, humidity, light, and CO2 of a room (10 time series)

SMD [85] Server Machine telemetry (281 time series)
SVDB [43] ECG recordings (115 time series)
Anomaly Detection Description
IForest [60] constructs trees based on random splits. The nodes (i.e., subsequences) with shorter depth are labeled as anomalies
IForestl [60] same as IForest, but each point (individually) is used as input
LOF [25] computes the ratio of the neighboring density to the local density
MP [97] detects abnormal subsequences with the largest nearest neighbor distance
NormA [16] identi es normal patterns using clustering and computes weighted distance to the normal patterns
PCA [3 projects data to a lower-dimensional hyperplane and computes distance between subsequences and this plane
AE [80 trained to encode and reconstruct the data, and outliers are expected to have larger reconstruction errors
LSTM-AD [65] use an LSTM network to forecast the following value. The error prediction is then used to identify anomalies
POLY [58] ts a polynomial to forecast time series values. Outliers are detected with prediction error
CNN [68] forecasts the time series values with a convolutional neural network. The anomaly score is the prediction error
OCSVM [82] is a support vector method that ts the normal training dataset and nds the normal data’s boundary
HBOS [41] builds a histogram for the time series. The anomaly score is the inverse of the height of the bin
Model Selection Description
SVC [24] maps instances to points in space to maximize the gap between classes
Bayes [100] uses Bayes’ theorem to classify a point using each class posterior probabilities
MLP [46] consists of multiple layers of interconnected neurons
QDA [39] is a discriminant analysis algorithm for classi cation problems

AdaBoost [38]

is a meta-algorithm using boosting technique with weak classi ers

Decision Tree [49]

is an approach that splits data points into separate leaves based on features

Random Forest [47]

is a set of Decision Trees fed with random samples and features

kNN [36]

assigns the most common class among its k nearest neighbors

Rocket [31] x

transforms time series using a set of convolutional kernels, creating features used to train a linear classi er

ConvNet [92]

uses convolutional layers to learn spatial features from the input data

ResNet [92]

is a ConvNet with residual connections between convolutional block

Inception Time [34]

is a combination of ResNets with kernels of multiple sizes

SiT-conv [32]

is a transformer architecture with a convolutional layer as input

SiT-linear [32]

is a transformer architecture for which non-overlapping subsequences are linearly projected into the embedding space

SiT-stem [94]

is a transformer architecture with convolutional layers with increasing dimensionality as input

SiT-stem-ReLU [91]

Is similar to SiT-stem but with Scaled ReLU

Evaluation Description
Classi cation Accuracy the number of correctly selected methods divided by the total number of time series
AUC-PR [30] Area under the Precision-Recall curve
VUS-PR [72] Volume under the Precision-Recall surface (obtained from di erent length of a bu er region surrounding the anomalies)
Training Time number of seconds required to train a model selection method

Selection Time

number of seconds required to predict the best model to use

Detection Time

number of seconds required to compute an anomaly score (i.e., selection time plus detector execution)

to evaluate reliably. This labeled dataset can then be series the corresponding subsequences originate from, is
used to train classi cation methods and divided into  empty.

the train, test, and validation sets. It is important to

note that although each time series produces multiple

samples (i.e., subsequences), these samples should not4.2 Time Series Classi cation Approaches

be mixed between train, validation, and test sets. In-

deed, too strong similarities between subsequences that In this section, we describe the time series classi er ap-
belong to the same time series, if contained in both the Proaches that we use as model selection methods. As
train, validation, and the test, can lead the classica- Mmany approaches have been proposed in the literature,
tion model to over t or create an illusion of accuracy. We restrict our experimental evaluation to two main

Therefore, we guarantee that the intersection between categories: (i) feature-based and (i) raw-based meth-
the train, validation, and test sets, regarding which time ~ 0ds. In addition, the second category can be divided
into two sub-categories: (i) convolutional-based and (ii)
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transformer-based. It is worth noting that raw-based
methods also utilize features for classi cation, as the
extraction of these features is performed automatically
within the network. Despite this, we classify them as
raw-based due to the nature of their input. Figure 4 illus-
trates a simpli ed taxonomy of the methods considered,
and we describe them in the following section.

4.2.1 Feature-based classi cation

The main idea regarding feature-based classi cation is
to use the dataset of time series (or subsequences of
time series) to create a dataset whose samples are de-
scribed by features common to all samples. Using the
feature-based dataset, we then employ traditional ma-
chine learning classi ers to classify each time series. We
use the TSFresh [28] (Time Series Feature extraction
based on scalable hypothesis tests) to extract each sub-
sequence’s features. The latter is used for automated
time series feature extraction and selection based on the
FRESH algorithm [29]. More speci cally, it automati-
cally selects relevant features for a speci c task. This
is achieved using statistical tests, time series heuristics,
and machine learning algorithms. The TSFresh package
provides three options for automated feature extraction,
namely, (i) comprehensive, (ii) e cient, and (iii) min-
imal. The rst two options provide 700 features and
the latter provides only 9. For scalability reasons (the
datasets can reach millions of subsequences), we consider
the minimal option in this paper.

Moreover, the objective is not to evaluate Feature-
based classi ers per se, but rather to evaluate the ability
of TSFresh to extract meaningful features for time series
classi cation (and model selection for anomaly detection,
in particular). In this paper, we consider the following
classi cation approaches.

[SVC] A Support Vector Classi er (SVC) [24] is a clas-

si er that maps instances in space in order to maximize
the width of the gap between the classes. New instances
are mapped into the same space and classi ed according
to which side of the gap they fall.

[Bayes] The naive Bayes classi er [100] uses Bayes’
theorem to predict the class of a new instance based
on prior probabilities and class-conditional probabili-
ties. The prediction is made by computing the posterior
probabilities for each class.

[MLP] A Multi Layer Perceptron (MLP) [46] is a fully
connected neural network.

[QDA] A Quadratic Discriminant Analysis (QDA) [39]
Classi er is a linear discriminant analysis algorithm.
The prediction is made by computing the discriminant
functions for each class.

[AdaBoost] AdaBoost [38] is a boosting ensemble ma-
chine learning algorithm for solving classi cation prob-
lems. It creates a sequence of weak classi ers, where each
classi er is trained on a weighted sample of the dataset.
The prediction is made by combining the predictions of
all classi ers, weighted by their accuracy.

[Decision Tree] A Decision Tree Classi er [49] is a tree-
based method that represents a sequence of decisions
based on the features of the dataset. To classify a new
instance, the algorithm follows the decisions in the tree
to reach a leaf node associated with a class.

[Random Forest] A Random Forest [47] is an ensem-
ble machine learning algorithm that combines multiple
decision trees, where each tree is built using a random
subset of the features and a random sample of the data.
The nal class prediction for a new instance results from
the aggregation of the predictions of all trees.

[KNN] A kNN classi er [36] is a method that classi es
instances based on their distance to other instances in
a training set. The algorithm assigns the new instances
to the class with the most number of closest neighbors
among the K nearest data points.

4.2.2 Raw-based classi cation

Instead of using extracted features to perform classi ca-
tion, the raw values of the time series can be used directly.
While features are e cient for homogenizing time series
datasets (e.g., setting a constant number of features for
variable length time series), this approach might hide
important information in the shape of consecutive val-
ues. Consequently, many approaches that use raw-values
time series have been proposed. However, it should be
noted that, although raw-based methods use the raw
time series as input, they still perform feature extraction
internally. Features are usually extracted within the rst
steps of the model and it is a learned process, in contrast
to the static feature extraction used in feature-based
methods. While other relevant classi cation methods
could also be considered in this category [96], we have
carefully selected those that have demonstrated strong
performance in recent evaluations [66]. Our choices also
aim to cover the broadest possible range of methods,
ensuring diversity across di erent approaches.

[Rocket] Among the recent raw-values methods, Mini-
Rocket [31] is one of the state-of-the-art time series
classi cation methods. The latter consists of a feature
extraction step and a classi cation step. More specif-
ically, MiniRocket works by transforming input time
series using a small, xed set of convolutional kernels
and using the transformed features to train a logistic
regression classi er (using stochastic gradient descent).
We refer to MiniRocket as Rocket.
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4.2.3 Convolutional-based classi cation

Convolutional-based approaches take as input raw-values

of time series and have been shown to be accurate for

time series classi cation [18].

[ConvNet] A Convolutional Neural Network (CNN)
[69] is a type of deep learning neural network widely
used in image recognition that is specially designed to
extract patterns through data with a grid-like structure,
such as images, or time series. A CNN uses convolution,
where a lter is applied to a sliding window over the
time series. The ConvNet architecture proposed in [92]
is composed of three stacked Convolutional blocks fol-
lowed by Global Average Pooling (GAP), and a Softmax
activation function. Each Convolutional block is com-
posed of a convolutional layer (used with a kernel length
of 3) followed by a batch normalization layer, followed
by a ReLU activation function is applied.

[ResNet] The Residual Network (ResNet) architec-
ture [45] was introduced to address the gradient vanish-
ing problem encountered in large CNNs [84]. A ResNet
is composed of several blocks connected together with
residual connections (i.e., identity mapping). For time
series classi cation, a ResNet architecture has been pro-
posed in [92], and has demonstrated strong classi ca-
tion accuracy [33]. It is the same architecture as the
previously described ConvNet, with additional residual
connections between convolutional blocks.
[InceptionTime] The model consists of a network us-
ing residual connections and convolutional layers with
kernels of variable lengths [34]. Such a network uses
three Inception blocks that replace the traditional resid-
ual blocks that we can nd in a ResNet architecture.
Each Inception block consists of a concatenation of con-
volutional layers using di erent sizes of lIters. For each
block, the time series is fed to three di erent 1D con-
volutional layers with di erent kernel sizes (10, 20, and
40) and one Max-Pooling layer with kernel size 3. The
last step consists of concatenating the previous four lay-
ers along the channel dimension and applying a ReLU
activation function to the output, followed by batch
normalization. The convolutional layers have 32 lters
and a stride parameter of 1.

4.2.4 Transformer-based classi cation

Transformer-based approaches were initially introduced
for Natural Language Processing [90]. Such methods
can easily be adapted for time series classi cation tasks,
and in this paper we propose SiT (Signal Transformer),
an extension of a recent computer vision transformer
approach [32]. SiT rst starts by projecting the input
to the latent space with an embedding step. After the

| Model selection with Time series Classification |
I

) ¥
| Feature-based | | Raw-based |

| Deep learning based |

Transformer-
based

ConvNet
ResNet |
Inception

ﬁocket

Fig. 4 Taxonomy of time series classi cation approaches used
as model selection methods. We use the same color code for
each class in all gures in the paper.

embedding step, the input is mapped to aD dimensional
space (we useD = 256 in the rest of the paper) that
serves as input to an encoder. For SiT, we use an encoder
originally proposed for computer vision tasks [90] that
consists of multiple blocks. Each block has an alternat-
ing multi-headed self-attention block and a feed-forward
layer, both preceded by a normalization step and a resid-
ual connection. We now describe the di erent embedding
steps in detail in the following paragraphs. In the ex-
perimental evaluation, we consider the SiT architecture
with the four embeddings as four di erent methods.
[SiT-conv] This embedding uses a single convolutional
layer to map the time series into the latent space. The
convolutional layer has a kernel and stride of the same
length (we use a length of 16 throughout the rest of the
paper), essentially taking non-overlapping steps over the
time series. Finally, the convolutional layer hasD lters
to match the input dimension of the SiT encoder.
[SiT-linear] The linear embedding [32] splits the input
time series into non-overlapping subsequences of length
Isit (we uselsit =16 in the rest of the paper). Then,
each patch is linearly projected into D dimensions to
match the input dimension of the SiT encoder.
[SiT-stem] The stem embedding [94] consists of 3 con-
volutional layers with a kernel length of 3, a stride length
of 2, and a number of lters equal to 3, 5, and 7, respec-
tively. These three convolutional layers are then followed
by a last convolutional layer with D dimensions and a
kernel and stride length equal to 1. This embedding was
initially proposed to overcome unstable behavior while
training because of its early visual processing step.
[SiT-stem-RelLU] Similarly to the previous embedding,
the stem-ReLU embedding [91] consists of 4 convolu-
tional layers with kernel lengths of 7, 3, 3, 8, stride
lengths of 2, 1, 1, 8, and padding of 3, 1, 1, 0. The
number of lters for each convolutional layer is 3, except
the last one with D lIters to match the SIiT encoder’s
dimension.
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4.3 Combining Anomaly Scores

Algorithm 1 MSAD inference

1: function Run

Unlike selecting a single detector, which limits anomaly
detection to a single detector’'s perspective, combining
detectors allows us to leverage complementary strengths
across multiple subsequences and anomaly types. This
combination process begins by using the model selector
to generate probability distributions over the detectors

for each subsequence of a time series (as shown in Fig- 4.

ure 3 (c)). These distributions re ect the model’s pre-

diction of each detector’s relevance to each subsequence. 10:

Noakwn

_Inference(T, M, k, c)
Input:

- Input time series
M - Model selector
k - Number of detectors to combine
¢ - Combination method
Output: Final anomaly score

. Model prediction per window
W Segment(T, M.input  _size)
P Predict(M, W)
. Average Strategy

if ¢ =\average" then

To combine these distributions into a nal set of weights 11 P Mean(P)
for the entire time series, we employ two methods: 12: Keep -Top -K(P, k)
or X ploy : 13: w Normalize( P)
Average Strategy (Figure 3 (d.1)): We compute . Vote Strategy
the average probability distribution over all subsequences. 14: else if ¢ = \vote" then
This results in a single average probability distribution 1> V' Count  _Votes(P)
that re ects the overall likelihood of each detector bein 16: Keep-Top -K(V, k)
) ] .g 17: w normalize( V)
the best choice. Formally, the aggregated probability 1s: end if
of a given detectorD;, noted Pp,, using the Average . Score computation
strategy is de ned as follows: 19: detectors Select _Detectors(w)
' 20: St Run _Detectors(T, detectors)
21: St Weighted _Average(S 1, w)
1 ) iTi 22: return final _score
Pp, = = PL()I),» ‘where n = = (2)  23: end function

i=1
The nal weights are computed by selecting the topk
detectors and re-normalizing their probabilities.
Vote Strategy (Figure 3 (d.2)): For each subse-
quence, we extract the detector with the highest prob-
ability, e ectively casting a vote for that detector. We

This approach ensures that the nal score integrates
information from multiple detectors, weighted according
to their relevance, as predicted by the model selector.

aggregate these votes across all subsequences. Formally,5 Experimental Evaluation

the aggregated vote for a given detectoD;, noted Vp, ,
using the Voting strategy is de ned as follows:

Vp. = X 1_o o ;where n = JTJ
Lo— i _ i -
] 1 PDj =max  z[1;m] PD K ’ ¢

©)

As in the average method, we compute the nal weights
by selecting the topk detectors and converting their
votes to probabilities such that their sum is equal to 1.

Algorithm 1 summarizes the inference phase of our
proposed pipeline MSAD. Overall, our pipeline takes
four inputs: the time series dataT, the model selector
M trained in advance, the number of detectorsk to
be combined, and the combination methodc (either
average or vote).

Initially, the input time series T is segmented into
non-overlapping windowsW based on the input size' of
the model selectorM , as described in Section 4.1. Sub-
sequently, the model selector generates the probabilities
P for each segment inW/. Depending on the chosen com-
bination method c, the algorithm computes the weights
for the detectors. The nal combined anlgmaly scoreSt
for the time series is computed asSt = ., W; Stp,.

We now describe in detail our experimental analysis.
For additional information, we make all our material
publicly available online [22] and provide an interactive
WebApp [23] for navigating and exploring the experi-
mental results.

5.1 Experimental Setup and Settings

Technical setup: We implemented the deep learning-

based model selection methods in Python 3.5 using the
PyTorch library [76]. For the feature-based approach,
we used the TSFresh [28] and scikit-learn [77] libraries.

We then used sktime [62] for theRocket algorithm im-

plementation. For the AD methods, we used the imple-
mentation provided in the TSB-UAD benchmark [75].

The evaluation was conducted on a server with Intel
Core i7-8750H CPU 2.20GHz x 12, with 31.3GB RAM,
and Quadro P1000/PCle/SSE2 GPU with 4.2GB RAM,

and on Jean Zay cluster with Nvidia Tesla V100 SXM2
GPU with 32 GB RAM.

Datasets: For our evaluation purposes, we use the pub-
lic datasets identi ed in the TSB-UAD benchmark [75].
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The benchmark comprises 16 datasets from various do-
mains as described in Table 1. Each dataset contains
multiple time series with point-level anomaly labels, re-
sulting in over 1980 distinct time series in total that we
use in our experiments.

For our in-distribution experiments, we divide the
benchmark into training, validation, and test sets. The
results presented in this section come exclusively from
the test set, which contains 497 time series that the
models have not seen during training.

For our out-of-distribution (OOD) experiments,
we use the leave-one-out approach. Each model is trained
on all datasets except one, which we later use for evalu-
ation (repeated for all datasets). This ensures that the
entire domain of the held-out dataset is unknown to the
model, simulating out-of-distribution scenarios that test
the transfer learning capabilities of the models.
Anomaly Detection Methods: For the experimental
evaluation, we select 12 di erent AD methods, summa-
rized in Table 1. Out of these, 8 are fully unsupervised
(i.e., they require no prior information on the anomalies
to be detected): IForest, IForestl, LOF, MP, NormA,
PCA, HBOS, and POLY. The remaining 4 methods
are semi-supervised (i.e., they require some informa-
tion related to normal behaviors), namely, OCSVM,
AE, LSTM-AD, and CNN. For all these anomaly detec-
tion baselines, we set the parameter as described in the
TSB-UAD benchmark [75].

Method Selection baselines: We then consider the
method selection baseline described in Section 4 and
summarized in Table 1. We rst consider feature-based
methods, that extract features using TSFresh [28] li-
brary to select the correct AD method. We then con-
sider Rocket, state-of-the-art time series classi er. We
also include two types of deep learning classi ers; (i)
Convolutional-based neural networks and (ii) Transformer-
based neural networks. Table 1 summarizes the di erent
model selection methods (i.e., classi ers). In total, we
consider 16 methods, trained with window lengths’
equal to 16, 32, 64, 128, 256, 512, 768, and 1024. In
total, we trained 128 models. In the following section,
we refer to a modelM trained using a window length *
as M-'.

Parameter settings: We use the same 70/30 split of
the benchmark for all the classi cation models. There-
fore, we can compare models trained on the same train-
ing set and evaluated on the same set of time series.
Then, for the feature-based methods, we set the hyperpa-
rameters of the models based on the default parameters
of scikit-learn. Moreover, for Rocket, we use 10000 ker-
nels to extract the features and the logistic regression
with stochastic gradient descent (computed in batches)
for the classi cation step. Finally, for Convolutional and

Transformer-based methods, we use a learning rate of
10° , with a batch size of 256 and an early stopping
strategy with a maximum of 50 epochs without improve-
ment. Moreover, we use the weighted cross-entropy loss
and set the maximum number of epochs to 10,000 (with
a training time limit of 20 hours). We use the default
hyperparameters for all classi ers to ensure fairness and
scalability, as hyperparameter tuning 128 di erent model
con gurations would not be computationally feasible.
While these settings may not provide the best possible
results for every classi er, they allow for a reasonable
baseline. Our goal in this study is to assess the relative
performance across model families and input settings
rather than to optimize individual models.

Evaluation measures: We nally use four evaluation
measures, summarized in Table 1. For model selection
accuracy, we use the classi cation accuracy (i.e., the
number of anomaly detectors correctly selected divided
by the total number of time series). For anomaly de-
tection accuracy, we use both AUC-PR [30] and VUS-
PR [72] (with a bu er length equal to 10 points). For
execution time, we measure the training time (i.e., the
time required to train a model selection algorithm),
the selection time (i.e., the time a model selection ap-
proach needs to predict which detector to use), and
the detection time (i.e., the time required to predict
which detector to use, and to execute it). We focus on
threshold-independent evaluation measures (AUC-PR
and VUS-PR), as they provide a more robust assessment
of performance, but we also compute 14 evaluation mea-
sures in total, including threshold-dependent ones, in
our public repository to support practical applications.

5.2 Overall Evaluation

We rst evaluate accuracy (classi cation and anomaly
detection) and execution time for all model selection
methods over the entire benchmark. We split the bench-
mark into a train and test set with 1404 and 497 time
series, respectively. Both sets contain time series from all
datasets. Thus, the models have examples of all available
domains. In Section 5.7, we evaluate the performance
of the models when applied to unseen (i.e., not used in
the training set) datasets.

5.2.1 Accuracy Evaluation

We rst analyze the accuracy of all model selection meth-
ods (using all window lengths) and compare them to the
Oracle, the Averaging Ensemble method (Avg Ensem-
ble), and the AD methods in the TSB-UAD benchmark.
Figure 5 (a) depicts the overall VUS-PR over the
entire TSB-UAD benchmark (i.e., each box-plot corre-
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Fig. 5 VUS-PR and Detection time (seconds) for all model selection approaches (showing only the window length and k that
maximize VUS-PR for each model) over a test set of 497 series from TSB-UAD. The methods are sorted: the most accurate
methods are at the top (a); the fastest methods are at the top (b)
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Fig. 6 Distribution of the selected models for ve models (the best for each category) compared to the distribution of the labels
(in black). Comparisons for time series containing (b) sequence vs. point anomalies, and (c) unique vs. multiple anomalies.

sponds to 497 accuracy values for the 497 time series
into the test set). The Convolutional-based approaches
are in dark blue, the Transformer-based approaches are
in yellow, the Feature-based approaches are in light blue,
Rocket models are in violet, and the AD methods of
the TSB-UAD benchmark are in light grey. The oracle

is the top box plot (in white), and the Avg Ensemble is
the orange box plot. The box plots are sorted based on
the median value (the mean accuracy of each model is
also displayed as a white circle). In total, we compare
234 models on 497 time series, comprising 128 model
selectors that were trained from scratch, 12 individual
AD methods from the TSB-UAD benchmark, and 2
baselines, namely the Oracle and Averaging Ensemble.
Out of the 128 trained models, the 4 top-performing
model selectors were further tested for combining mul-
tiple detectors. In Figure 5, we depict only the models
with the window length that leads to the best VUS-PR
for visual clarity. The method used to combine proba-
bilities and obtain the nal weights is denoted by 'V’
for vote and 'Av’ for average. The subsequent number
represents the value ok, i.e., the number of detectors
whose scores were combined for the nal result. For
example, the model at the top of Figure 5 (a) named
ConvNet-128V 4 refers to a Convolutional-based model
selector that takes as input subsequences of length 128,
and uses the vote method to combine the probabilities
of the top 4 predicted detectors.

First, almost all model selection methods outper-
form the existing AD methods. We also see that most
model selection methods outperform the Avg Ensemble
approach. Thus, we can conclude that model selection
using time series classi ers signi cantly improves the
state-of-the-art methods.

First, almost all model selection methods outper-
form the existing AD methods. We also see that most
model selection methods outperform the Avg Ensemble
approach. Thus, we can conclude that model selection
using time series classi ers signi cantly improves the
state-of-the-art methods. However, we also observe that
model selectors exhibit higher variance than individual
anomaly detectors. We further discuss this at the end
of this section.

More interestingly, we observe a partition in the rank-
ing of the methods. First, Convolutional and Transformer-
based approaches produce equivalent accuracy values
and represent the top-48 methods (Note that not all
models are shown here; in total, we evaluated 234 mod-
els). However, whereas all the Convolutional-based meth-
ods are in the top-48, a few of the Transformer-based
approaches are further away in the ranking. Moreover,
the rst non-deep learning method is Rocket-128V 1
(ranked 49), followed closely bykNN models. We also
observe that the Rocket approaches are very spread
across the ranking Rocket-128V 1 is ranked 50, and
Rocket-16-V 1 is ranked 124). This implies that the
choice of window length strongly impacts accuracy. Over-
all, the best selection model is over 2 times more accurate
than the best AD method in TSB-UAD.

Additionally, we discover that combining detectors
(i.e., model selectors withk > 1) yields slightly bet-
ter results in the in-distribution setting (we will later
demonstrate that the results are greatly improved in the
out-of-distribution (OOD) setting). Almost all models
that combine multiple detectors outperform their single-
detector equivalents. Overall, the best selection model
that combines detectors, i.e.ConvNet-128V 4 is 7:5%
more accurate than the best selection model withk = 1,
i.e., ResNet-1024-V 1.
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Fig. 7 Execution time vs. length of model selection methods.

Then, we also note that all model selection methods
are signi cantly less accurate than the Oracle. For ex-
ample, in Figure 5(a), there is a gap of 012 VUS-PR
between the Oracle and the best model selection method,
indicating substantial room for improvement. Moreover,
all model selection methods exhibit high variance in
accuracy, as shown by the box plots in Figure 5(a), in-
cluding the Oracle, which is the theoretically perfect
selector. This is primarily due to the presence of particu-
larly di cult time series for which none of the available
detectors perform well. As a result, even perfect model
selectors cannot guarantee high performance across all
cases. Making model selection more stable and robust
remains an important challenge for future work. Despite
this, model selectors consistently achieve strong perfor-
mance on a large subset of time series, making them
a more e ective and exible solution overall compared
to individual detectors that often underperform consis-
tently. That said, this trend does not hold in the OOD
setting, as discussed in Section 5.7. There, th&iT -512
model selector, when combining multiple detectors, al-
most guarantees equal to or better performance than
the best individual AD method.

5.2.2 Model selected distribution

We then examine the predictions, i.e. the detectors,
selected by the model selection approaches. In this
section, we consider onlyResNet-1024V 1, ConvNet-
128V 1, SiT -stem-512V 1 (or SiT -512%/ 1 for brevity),
KNN -1024¥ 1, and Rocket-128V 1. These are the top-
performing, single-detector models (evaluated using ei-
ther AUC-PR or VUS-PR), based on the analysis con-
ducted in Section 5.2. Additional information on AUC-
PR evaluation is available on our website [23]. The
correspondingAv 1 models yield nearly identical results
and are therefore not displayed here, but they can be
reviewed in the project’s repository.

Figure 6 (a) depicts the distribution of the chosen
detectors by the model selection approaches mentioned

above for the entire TSB-UAD benchmark. The black
bar corresponds to the true labels (i.e., the best detec-
tors). This analysis provides insight into how well model
selectors capture the underlying time series characteris-
tics and the types of anomalies they are most suited to
detect. We observe from Figure 6 (a) thatkNN -1024-
V1 and Rocket-128V 1 are signi cantly overestimating
the detector NormA (as well as LOF for Rocket-128V 1
and HBOS for KNN -1024¥/ 1), whereasResN et-1024-
V1, ConvNet-128V 1, and SiT-512V 1 are matching
the correct distribution of detectors (we observe a slight
underestimation of LOF, IForest1l and an overestimation
for POLY). Overall, the deep learning-based model selec-
tors show signi cantly better alignment with the ground
truth, compared to the kNN and Rocket models, which
tend to over-predict the majority class.

Moreover, we measure the prediction distribution
di erences for time series containing sequence anomalies
(Figure 6 (b.1)) and point anomalies (Figure 6 (b.2)),
and for time series containing only one anomaly (Fig-
ure 6 (b.3)) and multiple anomalies (Figure 6 (b.4)).
This breakdown allows us to evaluate how each classi-
er generalizes across di erent types of anomalies and
structural variations in the data. We rst observe that
predictions of model selection methods are signi cantly
di erent for time series with sequence and point anoma-
lies. More speci cally, ResNet-1024V 1, ConvNet-128-
V1, and SiT-512V 1 are correctly selecting the method
CNN, whereaskNN -1024V 1 and Rocket-128V 1 are
over selecting LOF and NormA for time series con-
taining point anomalies. CNN and Transformer-based
selectors are more sensitive to local spike-like patterns
typical of point anomalies, while KNN and Rocket are
not able to accurately identify them. However, for se-
guence anomaly, as it represents most of the TSB-UAD
benchmark, the prediction distribution is similar to the
one over the entire benchmark. Moreover, the correct
predictions of ResNet-1024V 1, ConvNet-128V 1, and
SiT-512¥/1 for time series containing point anomalies
are interesting, as this information is not provided in
the training step. Therefore, the deep learning-based
model selectors found discriminant features in the time
series that indicate whether it might contain a point or
a sequence anomaly.

Finally, we measure the di erences between the pre-
diction distributions of model selection methods between
time series containing uniqgue and multiple anomalies.
The true labels (black bars in Figure 6 (b.3) and (b.4))
indicate that, for uniqgue anomalies, the best detectors
are LOF, NormA, and HBOS, and for multiple anoma-
lies, the best detector is NormA. We observe that all
model selection approaches tend to prefer LOF, NormA,
and HBOS for time series containing a unique anomaly.
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The latter shows that model selection methods can ex-
tract discriminant features that indicate if one time
series is more likely to have multiple anomalies, with-
out explicit supervision. However, in cases of multiple
anomalies,ResNet, ConvNet, and SiT correctly iden-
tify that HBOS and LOF do not perform as well as
NormA, and adjust their predictions accordingly. This
adaptive behavior is not observed in thekNN and
Rocket models.

5.2.3 Execution Time Evaluation

We now discuss the execution time of model selection
methods. In this section, we focus only on the detection
time (i.e., the number of seconds required by a method
to predict which detectors to use and to run them). Fig-
ure 5 (b) depicts the detection time (on a log scale) for
each method and detector in the TSB-UAD benchmark.
We rst observe that the Avg Ensemble, which requires
running all detectors, is signi cantly slower than the
rest. Then, all model selection methods are of the same
order of magnitude as the detectors. Even models with
k > 1 remain within the same order of magnitude as
the anomaly detectors, although, as expected, they are
noticeably slower than single-detector models. We also
observe that all the deep learning methods are slower
than the feature-based approaches, except fokNN -
1024V 3 and KNN -1024-Av8 which are slower due to
selecting more than one detector. This is surprising, as
detection time mainly depends on the chosen detector.
Overall, we conclude that method selection is the only
viable solution that outperforms the existing AD meth-
ods and can be executed in the same order of magnitude
of time.

Finally, in Figure 7, we depict the scalability of
single-detector model selection methods versus individ-
ual detectors and the Avg Ensemble approach as the
time series length increases (the average equivalents of
the model selectors shown, yield identical results and are
thus not depicted here). We observe that, on average, the
execution time of model selection approaches increases
similarly to the execution time of individual detectors
when the time series length increases. We also observe
that the time series length signi cantly impacts the Avg
Ensemble approach execution time. The latter shows
the scalability issue of the Avg Ensemble approach for
very large time series.

5.3 In uence of the Window Length

In this section, we analyze the in uence of the win-
dow length on classi cation accuracy (Figure 8 (a.l1)),
anomaly detection accuracy (Figure 8 (a.2) and (a.3))

Fig. 8 (a) Accuracy ((a.1) classi cation accuracy, (a.2) VUS-
PR and (a.3) AUC-PR) and (b) execution time ((b.1) training
time, (b.2) selection time and (b.3) detection time) versus
window length .

and execution time (Figure 8 (b)). We perform the analy-
sis per group of methods (i.e., averages for Convolutional,
Transformer, Rocket, and Feature-based methods), fo-
cusing exclusively on single-detector models that use
the vote combination method.

We rst observe in Figure 8 (a) that Convolutional-
based and Transformer-based methods outperform the
best AD methods (green dashed line in Figure 8 (a.2)
and (a.3)), the Avg Ensemble approach (orange dotted
line in Figure 8 (a.2) and (a.3)), Rocket and Feature-
based methods, whatever the length used with regard
to the classi cation accuracy, VUS-PR, and AUC-PR.
Deep learning-based model selectors are more e ective at
capturing time series characteristics that are relevant for
model selection, especially with longer windows lengths
that allow them to better observe structure and trends.
We also note that Transformer-based approaches are
less accurate for shorter lengths (less than 100 points),
whereas the accuracy of Convolutional-based approaches
is stable regardless of the window length. This di erence
likely re ects that Transformer models require more con-
text to build meaningful representations, while Convolu-
tional models can extract local patterns even from short
windows. Overall, Transformer and Convolutional-based
approaches converge to the same anomaly detection
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Fig. 9 Correlation between accuracy and time series characteristics vs. the window length used to train the model selection.

accuracy (both for VUS-PR and AUC-PR) when the
window length increases.

Furthermore, we observe thatRocket and Feature-
based approaches are both signi cantly faster to be
trained than Convolutional and Transformer-based ap-
proaches (Figure 8 (b.1)). We make the same observation
for selection time (Figure 8 (b.2)). For the detection
time, we observe that Rocket execution time is very
unstable when compared to the other approaches. The
latter means that the choice of length strongly impacts
the model selection performed by Rocket, leading to
very diverse selection and execution timesRocket may
be more sensitive to how much context is available, and
that its selection decisions vary more depending on the
windowed input size.

In the general case, we can make the following two
statements: (i) A large window length results in faster
selection time for the model selection process and better
accuracy for Convolutional and Transformer-based ap-
proaches. Deep architectures bene t from having more
input information, making them better suited to long,
structured time series. (ii) Feature-based approaches are
signi cantly faster but less accurate than Convolutional-
based and Transformer-based approaches, regardless of
the window length used.

5.4 In uence of Datasets and Anomaly Types

In this section, we evaluate the in uence of datasets and
anomaly characteristics on model selection accuracy. We
perform the analysis per group of methods (i.e., average
performances for Convolutional, Transformer, Rocket,
and Feature-based methods), focusing exclusively on
single-detector models that use the vote combination
method.

For this experiment, we evaluate the dataset and
anomaly characteristics (i.e., the number of time se-
ries, the average length of the time series, the average
number of anomalies and the average anomaly length).
Figure 9 depicts these characteristics (x-axis) versus
the average increase of accuracy (VUS-PR of the model

selection method subtracted by VUS-PR of the best
AD method for each dataset) for each model selection
method using a given window length. For instance, if a
point (one model selection method on one dataset) is
positive (above the black dotted line), then this model
is more accurate on the corresponding dataset than
the best AD method selected on this same dataset. We
observe low correlations between dataset and anomaly
characteristics (i.e., 0.6 <r < 0:6). Thus, we cannot
conclude any statement on the impact of these charac-
teristics and the model selection methods’ performances.
However, we can make the following observations.

First, Figure 9 (a) shows that the number of time
series is impacting more substantially Convolutional
and Transformer-based approaches with large window
lengths. For the average time series length, only Feature-
based approaches are positively impacted. On the con-
trary, Convolutional and Transformer-based approaches
are less accurate when the average time series length is
increasing. These observations imply that deep learning-
based selectors ConvNet, SiT) bene t more from hav-
ing a larger number of training examples rather than
longer sequences. This is likely because additional time
series provide more diverse information, whereas longer
sequences may contain more repetitive patterns rather
than new information. In contrast, Feature-based ap-
proaches bene t from both more and large instances.

Then, Figure 9 (b) shows that Feature-based ap-
proach accuracy is increasing with the anomaly charac-
teristics, whereas these characteristics negatively impact
(or not at all) Convolutional and Transformer-based
methods. More speci cally, we observe that Feature-
based approaches (regardless of the window length) are
more accurate with time series containing large anoma-
lies, and Convolutional-based approaches are less ac-
curate (irrespective of the window length) when the
number of anomalies increases. This may suggest that
more and larger anomalies have a stronger impact on
the statistical features that Feature-based model selec-
tors rely on, thereby aiding their performance. Time
series with such anomalies are likely to stand out more
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Fig. 10 VUS-PR vs Kk, i.e. detectors selected (the 4 plots on the left), and Execution time vs

k (the 4 plots on the right). The

analysis is performed per model. The yellow rectangle highlights the k maximizing accuracy.

in terms of statistical features that are being extracted,
making them easier to classify correctly.

We note that Rocket's correlation with the dataset
and the anomaly characteristics is unstable. The latter
is explained by the fact that the model prediction of
Rocket is sensitive to the window length (as described
in Section 5.3). Thus, it is impossible to conclude on
Rocket’s performances, datasets, and anomalies.

5.5 In uence of k and Combination Methods

In this section, we analyze the relationship between the
anomaly detection accuracy of model selection methods
(Figure 10 (a)) and their execution time (Figure 10 (b))
in relation to k, i.e. the number of detectors combined
to produce the nal anomaly score.

First, in Figure 10 (a), we observe that all models
surpass the Avg Ensemble in anomaly detection accu-
racy, and that there is a consistent improvement when
combining more than one detector (i.e.k > 1). However,
this improvement is not constant, as the gains plateau
after a certain point. More speci cally, ConvNet-128,
ResNet-1024, andSiT -512 achieve peak performance
at k = 5, while kNN -1024 peaks atk = 8. Further-
more, for every model, the average combination method
yields better results than the vote method. Although the
di erence between the two methods is not substantial,
it is su cient to prioritize the average method when
considering only the accuracy as main criteria.

Furthermore, not all models exhibit the same im-
provement in anomaly detection accuracy when combin-
ing multiple detectors. Speci cally, ConvNet-128 shows
an increase of 6.9%ResNet-1024 4.5%,SiT -512 4.3%
and kNN -1024 11.5%. Interestingly,kNN -1024 bene-
ts the most when combining detectors, while overall
ConvNet-128 achieves the highest VUS-PR. Although
combining detectors is promising, a gap remains when
compared to the performance of the Oracle.

In Figure 10 (b), we observe that the Vote method is
consistently faster ask increases compared to Average.
This occurs because, although the model is instructed
to use, for example,k = 9, the Vote method frequently
selects fewer detectors (i.e.k < 9). This happens be-
cause some detectors are simply never selected across
the windows of a time series, and thus can not con-
tribute to the nal result. In simple terms, the actual k
in the Vote method is often smaller than the prede ned
k. This presents an opportunity to design a model selec-
tion approach that combines multiple detectors without
requiring the parameter k, as the Vote method naturally
converges to a value of k. Importantly, while there is a
di erence in anomaly detection accuracy between the
two combination methods, it is not substantial enough
to disregard this concept from future research.

Finally, we observe a consistent increase in detec-
tion time across models ask increases. However, the
highest-performing models (highlighted in yellow boxes
in Figure 10 (b)) remain signi cantly faster than the Avg
Ensemble, highlighting the value of running a subset of
detectors for anomaly detection rather than all of them.
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Fig. 11 Classi cation vs. anomaly detection accuracy (VUS-
PR) for (a) all datasets and (b) two speci ¢ datasets.

As a rule of thumb, and based on the results described
above, k =5 can be set as a default parameter.

5.6 Detection vs Classi cation Accuracy

In this section, we analyze the relationship between
the model selection methods’ classi cation accuracy
and the resulting anomaly detection accuracy. In this

experiment, we consider VUS-PR as anomaly detection
measure. For this experiment, we extend the de nition

of Oracle (introduced in Section 3) as follows:

De nition 3~ We de ne Oracleyj as a hypothetical
model selection method that has a classi cation accuracy
of k 2 [0;1] and selects thej " best detector (amongm
detectors) in cases of misclassi cation. Thus,Oracle;.;
always selects the best detector, and®racley., always
selects the worst detector. Finally, we de neOraclex.r
as the model selection method with a classi cation ac-
curacy ofk 2 [0; 1] and that randomly selects a detector
in misclassi cation cases.

Figure 11 depicts the latter comparison for all datasets
(Figure 11 (a)), and two speci c datasets (Figure 11 (b)).
We rst observe a strong correlation between classi ca-
tion accuracy and anomaly detection accuracy for each
speci ¢ dataset and, on average, all datasets. However,
methods belonging to di erent families (e.g., Feature-
based or Transformer-based) are not performing the
same. For instance, Figure 11 (a) shows that Feature-
based approaches are not accurate for YAHOO but are
the best models for KDD21. Overall, we observe that
Convolutional and Transformer-based are more accurate
in classi cation and anomaly detection (Figure 11(b)).

We also depict in Figure 11 (a) the lines corre-
sponding to Oracley.,, Oracley.s, Oracley.s, Oracleyr ,
and Oracley., . For a given classi cation accuracy, k,
Oracley.2, and Oracley.,, correspond to the upper and
lower bounds. The latter means that model selection
approaches with a given classi cation accuracy will be
within the previously mentioned upper and lower bounds
for VUS-PR (i.e., in the gray zone in Figure 11 (a)).
Thus, any model selection method that has a classi -
cation accuracy above 0.53 (intersection between the
two dashed red lines) is better than the current best
AD method in TSB-UAD (i.e., red dashed line in Fig-
ure 11 (b)). This is true only for a few Convolutional-
and Transformer-based methods in our experiments.

Moreover, we compare the positions of the model
selection methods with regard theOracley.3, Oracley.s,
and Oracley.gr . We observe in Figure 11 (b) that almost
all methods are aboveOraclex.r . The latter means that
the model selection methods do not randomly select
detectors when the wrong detector is selected. Moreover,
most models follow theOracley.4 line. The latter indi-
cates that the models averagely select the third-best in
case of misclassi cation. Finally, the observations dis-
cussed above demonstrate three important statements:
(i) classi cation accuracy can be used as a proxy for
anomaly detection accuracy, and without computing the
anomaly detection accuracy, we can provide an anomaly
detection accuracy lower and upper bounds; (ii) the
gap between the best model selection and the top right
corner of the gray zone shows that there is a signi -
cant margin for improvement for future work; (iii) the
vertical gap between the models and the upper bound
(Oracley.2) shows that there is an important margin of
improvement in the prediction rank: a model with the
same classi cation accuracy can gain up to @ VUS-PR
if it better selects models.

5.7 Out-of-Distribution Experiments

Up to this point, we tested the performances of the
model selection methods when trained on a subset of
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Fig. 12 Out-of-distribution anomaly detection accuracy (nor-
malized VUS-PR) versus k per model selection method for
Average and Vote combination methods.

the benchmark with examples from all 16 datasets avail-
able. These results are interesting when we suppose that
a user wants to analyze datasets similar to the one con-
sidered in the benchmark. In some cases, though, we
may want to analyze time series that are not similar
to any of those in the benchmark. Therefore, in this
section, we measure the ability of the model selection
methods to be used in an OOD manner (i.e., used for
datasets that are not similar to the one used in the train-
ing set). We run the following experiment. We train the
model selection methods on 15 datasets (70% of the
time series for training and the other 30% for valida-
tion), and we test on the remaining one. We try all 16
possible test partitions, and (for brevity) report 8 of
these tests in Figure 13 (a). We only show the results for
the best-performing model selection methods, namely,
ResNet-1024,ConvNet-128, SiT-512, kNN -1024 and
the Averaging ensemble for comparison.

Figure 12 shows the normalized VUS-PR, denoted
VUS-PR for each model selection approach, across all
values of k, and both combination methods, namely
Average and Vote. AV US-PRvalue of 1 corresponds
to the Oracle’s performance on each test, while O cor-
responds to the worst AD method. First, as in the
in-distribution setting, we observe that the Average com-
bination method consistently outperforms Vote when
combining detectors. Unlike the in-distribution setting,
the anomaly detection accuracy does not plateau af-
ter a certain k, but instead continuous to improve as
k increases. Notably,ConvNet and ResNet reach the
performance of the Avg Ensemble atk = 5. Thus, com-
bining detectors allows for a signi cant reduction in exe-
cution time, as models can achieve similar performance
to the Avg Ensemble by running only 5 detectors in-
stead of 12. Finally, we observe that the best-performing

Fig. 13 Out-of-distribution experiment. Comparison of model
selection approaches (a) on average, and (b) per dataset, with
(left) k = 1 and (right) k = 8
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model isConvNet-128, and that SiT -512 shows remark-
able improvement, gaining more than 0.1 VUS-PR after
combining only 4 detectors.

Figure 13 (@) illustrates the normalized VUS-PR
for all 16 tests. The gure shows that when using only
single-detector models, we fail to match the performance
of the Avg Ensemble in the OOD setting and barely sur-
pass the accuracy of the best AD method, as measured
on the train set (dotted green line in Figure 13 (a)).
However, by combining detectors, we can both achieve
the performance and reduce the execution time of the
Avg Ensemble. As with the in-distribution setting, we
observe that anomaly detection bene ts from multiple-
detector model selection in the OOD setting. Another
observation is that while SiT-512 does not achieve the
highest performance, its box plot skewers suggest that
it is the only model that can almost guarantee equal to
or better performance than the best AD method on the
train set.

Figure 13 (b) depicts the average accuracy for 8
out of the 16 tests (datasets excluded from the train-
ing set and used for testing). We observe very di erent
results. First, for Electrocardiograms (SVDB), neither
the model selection methods nor the Avg Ensemble out-
performs the best AD method (selected on the training
set). However, for various kinds of sensor data (GHL
and Occupancy), model selection methods and the Avg
Ensemble do outperform the best AD method. This dif-
ference can be explained by the fact that ECGs exhibit
less diverse behaviors (i.e., repetitive normal patterns
and similar anomalies) than other sensor data. Con-
sequently, it is more likely to have one method that
performs well on all ECG time series. This observation
is supported by the fact that the performance of the
best AD method closely matches that of the Oracle for
SVDB. Interestingly, in the GHL dataset, combining
detectors, i.e.,k > 1, reduces the performance. This
indicates the poor ranking produced by model selectors
for this speci ¢ dataset, con rming the need for future
research towards rank-based training and prediction for
model selection (i.e., conclusion of Section 5.6). Finally,
the use ofk > 1 is critical to ensure performance similar
to or better than Avg Ensemble, as seen in the Occu-
pancy and Genesis datasets. Combining detectors to
produce the nal anomaly score is noticeably bene cial.

Overall, we observe that: (i) combining multiple de-
tectors (i.e., k > 1) is crucial in the out-of-distribution
setting to achieve performance comparable to the Avg
Ensemble; (ii) the performance of model selection meth-
ods varies signi cantly across di erent types of time
series data; (iii) classi ers as model selection can be
used for TSAD, even though similar time series are not
in the training set.

6 Conclusion

TSAD is a challenging problem and an important area
of research with applications in many scienti c, societal,
and industrial domains. Despite the multitude of solu-
tions proposed in the literature, we observe that there
exists no method that outperforms all others when mea-
sured on large heterogeneous benchmarks. Based on
our experimental evaluation, we answer the questions
of Section 3.5 as follows:

1. Classi cation as Model selection: We observe
that time series classi cation methods accurately se-
lect anomaly detection models. Overall, Transformer
and Convolutional-based model selection methods
outperform each individual detector. Nevertheless,
there is a large gap between the best method and
the Oracle, motivating future work toward that di-
rection. An interesting next step could involve incor-
porating detector diversity into the model selection
process. We observe that certain detectors exhibit
strong correlations in their anomaly score patterns,
while others are largely uncorrelated. This suggests
that combining diverse (i.e., less correlated) but accu-
rate detectors could yield more informative anomaly
scores than combining similar ones. Integrating such
diversity-aware strategies while still preserving com-
putational e ciency remains an open and promising
challenge for future work.

2. Single vs. multiple detectors: We nd that com-
bining even a few detectors signi cantly improves
performance. In the OOD case, combining detectors
(k > 1) is necessary to outperform the Avg Ens.

3. Ensembling or selecting: We observe that model
selection is signi cantly more accurate than the En-
sembling method. Moreover, in the in-distribution
setting, k = 1 is su cient to signi cantly outperform
Ensembling.

4. Features or Raw values: We observe that raw-
based methods are more accurate on average than
feature-based approaches.

5. Out-Of-Distribution: (1) and (3) hold. However,
for (2), we observe that model selection withk =1
is not enough to reach the performance of the en-
sembling method when applied to time series very
di erent from those in the training benchmark. Nev-
ertheless,k = 5 enables model selection to reach the
accuracy of ensembling while reducing signi cantly
the overall execution time. Finally, model selection
with larger values of k > 5 outperforms ensembling
in the out-of-distribution setting, however the bene t
in terms of execution time is rather limited.

The above observations point to promising directions for
future work in AutoML frameworks that rely on model
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selection. As mentioned in Section 5.6, improving the
rank prediction could signi cantly improve the anomaly
detection accuracy. Moreover, model selection could be
trained to choose the best compromise between accu-
racy and execution time, improving the overall inference
time of model selection. Finally, to support real-world
adoption, we provide the following recommendations:

1. Based on our experiments, we recommend using

window sizes of at least 128. Values like 512 or 1024
are both e ective, so users may choose based on the
expected size of the patterns in their data.

. Deep learning model selectors, such a€onvNet-
128 andSiT -512, perform consistently well in both
in-distribution and OOD scenarios, making them
reliable default choices.

. For combining predicted detectors, both voting and
averaging are accurate in-distribution. However, in
the OOD setting, voting provides a better trade-o
between performance and e ciency.

. In the in-distribution case, selecting a single detector
is often su cient. In contrast, combining multiple
detectors is crucial for OOD robustness, where even
k = 5 enables strong performance gains, while re-
maining computationally e cient.

These insights aim to help practitioners apply model
selection techniques e ectively in practice and high-
light the need for more robust strategies in time series
anomaly detection.
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