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Abstract In a Hilbert space setting, for convex optimization, we analyze the con-
vergence rate of a class of first-order algorithms involving inertial features. They
can be interpreted as discrete time versions of inertial dynamics involving both
viscous and Hessian-driven dampings. The geometrical damping driven by the
Hessian intervenes in the dynamics in the form ∇2f(x(t))ẋ(t). By treating this
term as the time derivative of ∇f(x(t)), this gives, in discretized form, first-order
algorithms in time and space. In addition to the convergence properties attached
to Nesterov-type accelerated gradient methods, the algorithms thus obtained are
new and show a rapid convergence towards zero of the gradients. On the basis
of a regularization technique using the Moreau envelope, we extend these meth-
ods to non-smooth convex functions with extended real values. The introduction
of time scale factors makes it possible to further accelerate these algorithms. We
also report numerical results on structured problems to support our theoretical
findings.
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1 Introduction

Unless specified, throughout the paper we make the following assumptions
H is a real Hilbert space;

f : H → R is a convex function of class C2, S := argminH f 6= ∅;
γ, β, b : [t0,+∞[→ R+ are non-negative continuous functions, t0 > 0.

(H)

As a guide in our study, we will rely on the asymptotic behavior, when t→ +∞,
of the trajectories of the inertial system with Hessian-driven damping

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0,

γ(t) and β(t) are damping parameters, and b(t) is a time scale parameter.

The time discretization of this system will provide a rich family of first-order
methods for minimizing f . At first glance, the presence of the Hessian may seem to
entail numerical difficulties. However, this is not the case as the Hessian intervenes
in the above ODE in the form ∇2f(x(t))ẋ(t), which is nothing but the derivative
w.r.t. time of ∇f(x(t)). This explains why the time discretization of this dynamic
provides first-order algorithms. Thus, the Nesterov extrapolation scheme [25,26]
is modified by the introduction of the difference of the gradients at consecutive
iterates. This gives algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = T (yk),

where T , to be specified later, is an operator involving the gradient or the proximal
operator of f .

Coming back to the continuous dynamic, we will pay particular attention to
the following two cases, specifically adapted to the properties of f :

• For a general convex function f , taking γ(t) = α
t , gives

(DIN-AVD)α,β,b ẍ(t) +
α

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0.

In the case β ≡ 0, α = 3, b(t) ≡ 1, it can be interpreted as a continuous version
of the Nesterov accelerated gradient method [31]. According to this, in this
case, we will obtain O

(
t−2
)

convergence rates for the objective values.
• For a µ-strongly convex function f , we will rely on the autonomous inertial

system with Hessian driven damping

(DIN)2√µ,β ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

and show exponential (linear) convergence rate for both objective values and
gradients.

For an appropriate setting of the parameters, the time discretization of these
dynamics provides first-order algorithms with fast convergence properties. Notably,
we will show a rapid convergence towards zero of the gradients.
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1.1 A historical perspective

B. Polyak initiated the use of inertial dynamics to accelerate the gradient method
in optimization. In [27,28], based on the inertial system with a fixed viscous damp-
ing coefficient γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

he introduced the Heavy Ball with Friction method. For a strongly convex func-
tion f , (HBF) provides convergence at exponential rate of f(x(t)) to minH f . For
general convex functions, the asymptotic convergence rate of (HBF) is O(1

t ) (in
the worst case). This is however not better than the steepest descent. A deci-
sive step to improve (HBF) was taken by Alvarez-Attouch-Bolte-Redont [2] by
introducing the Hessian-driven damping term β∇2f(x(t))ẋ(t), that is (DIN)0,β .
The next important step was accomplished by Su-Boyd-Candès [31] with the in-
troduction of a vanishing viscous damping coefficient γ(t) = α

t , that is (AVD)α
(see Section 1.1.2). The system (DIN-AVD)α,β,1 (see Section 2) has emerged as a
combination of (DIN)0,β and (AVD)α . Let us review some basic facts concerning
these systems.

1.1.1 The (DIN)γ,β dynamic

The inertial system

(DIN)γ,β ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [2]. In line with (HBF), it contains a fixed positive friction
coefficient γ. The introduction of the Hessian-driven damping makes it possible to
neutralize the transversal oscillations likely to occur with (HBF), as observed in
[2] in the case of the Rosenbrook function. The need to take a geometric damping
adapted to f had already been observed by Alvarez [1] who considered

ẍ(t) + Γ ẋ(t) +∇f(x(t)) = 0,

where Γ : H → H is a linear positive anisotropic operator. But still this damping
operator is fixed. For a general convex function, the Hessian-driven damping in
(DIN)γ,β performs a similar operation in a closed-loop adaptive way. The termi-
nology (DIN) stands shortly for Dynamical Inertial Newton. It refers to the natural
link between this dynamic and the continuous Newton method.

1.1.2 The (AVD)α dynamic

The inertial system

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,

was introduced in the context of convex optimization in [31]. For general convex
functions it provides a continuous version of the accelerated gradient method of
Nesterov. For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic rate
of convergence of the values f(x(t))− infH f = O

(
1/t2

)
. As a specific feature, the

viscous damping coefficient α
t vanishes (tends to zero) as time t goes to infinity,
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hence the terminology. The convergence properties of the dynamic (AVD)α have
been the subject of many recent studies, see [3,4,5,6,8,9,10,14,15,24,31]. They
helped to explain why α

t is a wise choise of the damping coefficient.
In [20], the authors showed that a vanishing damping coefficient γ(·) dissipates

the energy, and hence makes the dynamic interesting for optimization, as long as∫+∞
t0

γ(t)dt = +∞. The damping coefficient can go to zero asymptotically but not

too fast. The smallest which is admissible is of order 1
t . It enforces the inertial

effect with respect to the friction effect.
The tuning of the parameter α in front of 1

t comes from the Lyapunov analysis
and the optimality of the convergence rates obtained. The case α = 3, which
corresponds to Nesterov’s historical algorithm, is critical. In the case α = 3, the
question of the convergence of the trajectories remains an open problem (except in
one dimension where convergence holds [9]). As a remarkable property, for α > 3,
it has been shown by Attouch-Chbani-Peypouquet-Redont [8] that each trajectory
converges weakly to a minimizer. The corresponding algorithmic result has been
obtained by Chambolle-Dossal [21]. For α > 3, it is shown in [10] and [24] that the
asymptotic convergence rate of the values is actually o(1/t2). The subcritical case
α ≤ 3 has been examined by Apidopoulos-Aujol-Dossal[3] and Attouch-Chbani-

Riahi [9], with the convergence rate of the objective values O
(
t−

2α
3

)
. These rates

are optimal, that is, they can be reached, or approached arbitrarily close:

• α ≥ 3: the optimal rate O
(
t−2
)

is achieved by taking f(x) = ‖x‖r with r → +∞
(f become very flat around its minimum), see [8].

• α < 3: the optimal rate O
(
t−

2α
3

)
is achieved by taking f(x) = ‖x‖, see [3].

The inertial system with a general damping coefficient γ(·) was recently studied
by Attouch-Cabot in [4,5], and Attouch-Cabot-Chbani-Riahi in [6].

1.1.3 The (DIN-AVD)α,β dynamic

The inertial system

(DIN-AVD)α,β ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [11]. It combines the two types of damping considered above.
Its formulation looks at a first glance more complicated than (AVD)α . In [12],
Attouch-Peypouquet-Redont showed that (DIN-AVD)α,β is equivalent to the first-
order system in time and space ẋ(t) + β∇f(x(t))−

(
1
β −

α
t

)
x(t) + 1

β y(t) = 0;

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0.

This provides a natural extension to f : H → R ∪ {+∞} proper lower semicontin-
uous and convex, just replacing the gradient by the subdifferential.

To get better insight, let us compare the two dynamics (AVD)α and (DIN-AVD)α,β
on a simple quadratic minimization problem, in which case the trajectories can
be computed in closed form as explained in Appendix A.3. Take H = R2 and
f(x1, x2) = 1

2 (x21 + 1000x22), which is ill-conditioned. We take parameters α = 3.1,
β = 1, so as to obey the condition α > 3. Starting with initial conditions:
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Fig. 1 Evolution of the objective (left) and trajectories (right) for (AVD)α (α = 3.1) and
(DIN-AVD)α,β (α = 3.1, β = 1) on an ill-conditioned quadratic problem in R2.

(x1(1), x2(1)) = (1, 1), (ẋ1(1), ẋ2(1)) = (0, 0), we have the trajectories displayed in
Figure 1. This illustrates the typical situation of an ill-conditioned minimization
problem, where the wild oscillations of (AVD)α are neutralized by the Hessian
damping in (DIN-AVD)α,β (see Appendix A.3 for further details).

1.2 Main algorithmic results

Let us describe our main convergence rates for the gradient type algorithms. Cor-
responding results for the proximal algorithms are also obtained.

General convex function Let f : H → R be a convex function whose gradient is
L-Lipschitz continuous. Based on the discretization of (DIN-AVD)

α,β,1+ β
t

, we

consider{
yk = xk +

(
1− α

k

)
(xk − xk−1)− β

√
s (∇f(xk)−∇f(xk−1))− β

√
s

k ∇f(xk−1)

xk+1 = yk − s∇f(yk).

Suppose that α ≥ 3, 0 < β < 2
√
s, sL ≤ 1. In Theorem 6, we show that

(i) f(xk)−min
H

f = O
(

1

k2

)
as k → +∞;

(ii)
∑
k

k2‖∇f(yk)‖2 < +∞ and
∑
k

k2‖∇f(xk)‖2 < +∞.

Strongly convex function When f : H → R is µ-strongly convex for some µ > 0,
our analysis relies on the autonomous dynamic (DIN)γ,β with γ = 2

√
µ. Based on

its time discretization, we obtain linear convergence results for the values (hence
the trajectory) and the gradients terms. Explicit discretization gives the inertial
gradient algorithm



6 H. Attouch, Z. Chbani, J. Fadili, H. Riahi

xk+1 = xk +
1−√µs
1 +
√
µs

(xk − xk−1)−
β
√
s

1 +
√
µs

(∇f(xk)−∇f(xk−1))−
s

1 +
√
µs
∇f(xk).

Assuming that ∇f is L-Lipschitz continuous, L sufficiently small and β ≤ 1
√
µ

, it

is shown in Theorem 11 that, with q =
1

1 + 1
2

√
µs

( 0 < q < 1)

f(xk)−min
H

f = O
(
qk
)

and
∥∥xk − x?∥∥ = O

(
qk/2

)
as k → +∞,

Moreover, the gradients converge exponentially fast to zero.

1.3 Contents

The paper is organized as follows. Sections 2 and 3 deal with the case of general
convex functions, respectively in the continuous case and the algorithmic cases. We
improve the Nesterov convergence rates by showing in addition fast convergence of
the gradients. Sections 4 and 5 deal with the same questions in the case of strongly
convex functions, in which case, linear convergence results are obtained. Section 6
is devoted to numerical illustrations. We conclude with some perspectives.

2 Inertial dynamics for general convex functions

Our analysis deals with the inertial system with Hessian-driven damping

(DIN-AVD)α,β,b ẍ(t) +
α

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0.

2.1 Convergence rates

We start by stating a fairly general theorem on the convergence rates and inte-
grability properties of (DIN-AVD)α,β,b under appropriate conditions on the pa-
rameter functions β(t) and b(t). As we will discuss shortly, it turns out that for
some specific choices of the parameters, one can recover most of the related re-
sults existing in the literature. The following quantities play a central role in our
analysis:

w(t) := b(t)− β̇(t)− β(t)

t
and δ(t) := t2w(t). (1)

Theorem 1 Consider (DIN-AVD)α,β,b , where (H) holds. Take α ≥ 1. Let x : [t0,+∞[→
H be a solution trajectory of (DIN-AVD)α,β,b . Suppose that the following growth con-

ditions are satisfied:

(G2) b(t) > β̇(t) +
β(t)

t
;

(G3) tẇ(t) ≤ (α− 3)w(t).
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Then, w(t) is positive and

(i) f(x(t))−min
H

f = O
(

1

t2w(t)

)
as t→ +∞;

(ii)

∫ +∞

t0

t2β(t)w(t) ‖∇f(x(t))‖2 dt < +∞;

(iii)

∫ +∞

t0

t
(

(α− 3)w(t)− tẇ(t)
)

(f(x(t))−min
H

f)dt < +∞.

Proof Given x? ∈ argminH f , define for t ≥ t0

E(t) := δ(t)(f(x(t))− f(x?)) +
1

2
‖v(t)‖2 , (2)

where v(t) := (α− 1)(x(t)− x?) + t (ẋ(t) + β(t)∇f(x(t)) .
The function E(·) will serve as a Lyapunov function. Differentiating E gives

d

dt
E(t) = δ̇(t)(f(x(t))− f(x?)) + δ(t)〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t)〉. (3)

Using equation (DIN-AVD)α,β,b , we have

v̇(t) = αẋ(t) + β(t)∇f(x(t)) + t
[
ẍ(t) + β̇(t)∇f(x(t)) + β(t)∇2f(x(t))ẋ(t)

]
= αẋ(t) + β(t)∇f(x(t)) + t

[
− α

t ẋ(t) + (β̇(t)− b(t))∇f(x(t))
]

= t
[
β̇(t) +

β(t)

t
− b(t)

]
∇f(x(t)).

Hence,

〈v(t), v̇(t)〉 = (α− 1)t
(
β̇(t) +

β(t)

t
− b(t)

)
〈∇f(x(t)), x(t)− x?〉

+t2
(
β̇(t) +

β(t)

t
− b(t)

)
〈∇f(x(t)), ẋ(t)〉

+t2β(t)
(
β̇(t) +

β(t)

t
− b(t)

)
‖∇f(x(t))‖2 .

Let us go back to (3). According to the choice of δ(t), the terms 〈∇f(x(t)), ẋ(t)〉
cancel, which gives

d

dt
E(t) = δ̇(t)(f(x(t))− f(x?)) + (α−1)

t δ(t)〈∇f(x(t)), x? − x(t)〉
− β(t)δ(t) ‖∇f(x(t))‖2 .

Condition (G2) gives δ(t) > 0. Combining this equation with convexity of f ,

f(x?)− f(x(t)) ≥ 〈∇f(x(t)), x? − x(t)〉,

we obtain the inequality

d

dt
E(t) + β(t)δ(t) ‖∇f(x(t))‖2 +

[ (α− 1)

t
δ(t)− δ̇(t)

]
(f(x(t))− f(x?)) ≤ 0. (4)

Then note that

(α− 1)

t
δ(t)− δ̇(t) = t

(
(α− 3)w(t)− tẇ(t)

)
. (5)
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Hence, condition (G3) writes equivalently

(α− 1)

t
δ(t)− δ̇(t) ≥ 0, (6)

which, by (4), gives
d

dt
E(t) ≤ 0. Therefore, E(·) is non-increasing, and hence

E(t) ≤ E(t0). Since all the terms that enter E(·) are nonnegative, we obtain (i).
Then, by integrating (4) we get∫ +∞

t0

β(t)δ(t) ‖∇f(x(t))‖2 dt ≤ E(t0) < +∞,

and ∫ +∞

t0

t
(

(α− 3)w(t)− tẇ(t)
)

(f(x(t))− f(x?))dt ≤ E(t0) < +∞,

which gives (ii) and (iii), and completes the proof. ut

2.2 Particular cases

As anticipated above, by specializing the functions β(t) and b(t), we recover most
known results in the literature; see hereafter for each specific case and related lit-
erature. For all these cases, we will argue also on the interest of our generalization.

Case 1 The (DIN-AVD)α,β system corresponds to β(t) ≡ β and b(t) ≡ 1. In this

case, w(t) = 1 − β
t . Conditions (G2) and (G3) are satisfied by taking α > 3 and

t > α−2
α−3β. Hence, as a consequence of Theorem 1, we obtain the following result

of Attouch-Peypouquet-Redont [12]:

Theorem 2 ([12]) Let x : [t0,+∞[→ H be a trajectory of the dynamical system

(DIN-AVD)α,β . Suppose α > 3. Then

f(x(t))−min
H

f = O
(

1

t2

)
and

∫ ∞
t0

t2‖∇f(x(t))‖2dt < +∞.

Case 2 The system(DIN-AVD)
α,β,1+ β

t
, which corresponds to β(t) ≡ β and b(t) =

1 + β
t , was considered in [30]. Compared to (DIN-AVD)α,β it has the additional

coefficient β
t in front of the gradient term. This vanishing coefficient will facilitate

the computational aspects while keeping the structure of the dynamic. Observe
that in this case, w(t) ≡ 1. Conditions (G2) and (G3) boil down to α ≥ 3. Hence,
as a consequence of Theorem 1, we obtain

Theorem 3 Let x : [t0,+∞[→ H be a solution trajectory of the dynamical system

(DIN-AVD)
α,β,1+ β

t
. Suppose α ≥ 3. Then

f(x(t))−min
H

f = O
(

1

t2

)
and

∫ ∞
t0

t2‖∇f(x(t))‖2dt < +∞.
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Case 3 The dynamical system (DIN-AVD)α,0,b , which corresponds to β(t) ≡ 0,
was considered by Attouch-Chbani-Riahi in [7]. It comes also naturally from the
time scaling of (AVD)α . In this case, we have w(t) = b(t). Condition (G2) is
equivalent to b(t) > 0. (G3) becomes

tḃ(t) ≤ (α− 3)b(t),

which is precisely the condition introduced in [7, Theorem 8.1]. Under this condi-
tion, we have the convergence rate

f(x(t))−min
H

f = O
(

1

t2b(t)

)
as t→ +∞.

This makes clear the acceleration effect due to the time scaling. For b(t) = tr, we

have f(x(t))−minH f = O
(

1

t2+r

)
, under the assumption α ≥ 3 + r.

Case 4 Let us illustrate our results in the case b(t) = ctb, β(t) = tβ . We have
w(t) = ctb − (β + 1)tβ−1, w′(t) = cbtb−1 − (β2 − 1)tβ−2. The conditions (G2), (G3)
can be written respectively as:

ctb > (β + 1)tβ−1 and c(b− α+ 3)tb ≤ (β + 1)(β − α+ 2)tβ−1. (7)

When b = β − 1, the conditions (7) are equivalent to β < c − 1 and β ≤ α − 2,

which gives the convergence rate f(x(t))−minH f = O
(

1

tβ+1

)
.

Let us apply these choices to the quadratic function f : (x1, x2) ∈ R2 7→
(x1 + x2)2 /2. f is convex but not strongly so, and argminR2 f = {(x1, x2) ∈ R2 :
x2 = −x1}. The closed-form solution of the ODE with this choice of β(t) and b(t) is
given in Appendix A.3. We choose the values α = 5, β = 3, b = β−1 = 2 and c = 5
in order to satisfy condition (7). The left panel of Figure 2 depicts the convergence
profile of the function value, and its right panel the trajectories associated with
the system (DIN-AVD)α,β,b for different scenarios of the parameters. Once again,
the damping of oscillations due to the presence of the Hessian is observed.

Discussion Let us first apply the above choices of (α, β(t), b(t)) for each case to the
quadratic function f : (x1, x2) ∈ R2 7→ (x1 + x2)2 /2. f is convex but not strongly
so, and argminR2 f = {(x1, x2) ∈ R2 : x2 = −x1}. The closed-form solution of
(DIN-AVD)α,β,b with each choice of β(t) and b(t) is given in Appendix A.3. For
all cases, we set α = 5. For case 1, we set β = b = 1. For case 2, we take β = 1. As
for case 3, we set r = 2. For case 4, we choose β = 3, b = β − 1 = 2 and c = 5 in
order to satisfy condition (7). The left panel of Figure 2 depicts the convergence
profile of the function value as well as the predicted convergence rates O

(
1/t2

)
and

O
(
1/t4

)
(the latter is for cases with time (re)scaling). The right panel of Figure 2

displays the associated trajectories for the different scenarios of the parameters.
The rates one can achieve in our Theorem 1 look similar to those in Theorem 2

and Theorem 3. Thus one may wonder whether our framework allowing for more
general variable parameters is necessary. The answer is affirmative for several
reasons. First, our framework can be seen as a one-stop shop allowing for a unified
analysis with an unprecedented level of generality. It also handles time (re)scaling
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Fig. 2 Convergence of the objective values and trajectories associated with the system
(DIN-AVD)α,β,b for different choices of β(t) and b(t).

straightforwardly by appropriately setting the functions β(t) and b(t) (see Case 3
and 4 above). In addition, though these convergence rates appear similar, one
has to keep in mind that these are upper-bounds. It turns out from our detailed
example in the quadratic case introduced above in Figure 2, that not only the
oscillations are reduced due to the presence of Hessian damping, but also the
trajectory and the objective can be made much less oscillatory thanks to the
flexible choice of the parameters allowed by our framework. This is yet again
another evidence of the interest of our setting.

3 Inertial algorithms for general convex functions

3.1 Proximal algorithms

3.1.1 Smooth case

Writing the term∇2f(x(t))ẋ(t) in (DIN-AVD)α,β,b as the time derivative of∇f(x(t)),
and taking the implicit time discretization of this system, with step size h > 0,
gives

xk+1 − 2xk + xk−1

h2
+

α

kh

xk+1 − xk
h

+
βk

h
(∇f(xk+1)−∇f(xk)) + bk∇f(xk+1) = 0.

Equivalently

k(xk+1 − 2xk + xk−1) + α(xk+1 − xk) + βkhk(∇f(xk+1)−∇f(xk))

+bkh
2k∇f(xk+1) = 0. (8)
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Observe that this requires f to be only of class C1. Set now s = h2. We obtain the
following algorithm with βk and bk varying with k:

(IPAHD): Inertial Proximal Algorithm with Hessian Damping.

Step k : Set µk := k
k+α (βk

√
s+ sbk).

(IPAHD)

{
yk = xk +

(
1− α

k+α

)
(xk − xk−1) + βk

√
s
(

1− α
k+α

)
∇f(xk)

xk+1 = proxµkf (yk).

Theorem 4 Assume that f : H → R is a convex C1 function. Suppose that α ≥ 1. Set

δk := h
(
bkhk − βk+1 − k(βk+1 − βk)

)
(k + 1), (9)

and suppose that the following growth conditions are satisfied:

(Gdis2 ) bkhk − βk+1 − k(βk+1 − βk) > 0;

(Gdis3 ) δk+1 − δk ≤ (α− 1)
δk

k + 1
.

Then, δk is positive and, for any sequence (xk)k∈N generated by (IPAHD)

(i) f(xk)−min
H

f = O
(

1

δk

)
= O

(
1

k(k + 1)
(
bkh−

βk+1

k − (βk+1 − βk)
))

(ii)
∑
k

δkβk+1‖∇f(xk+1)‖2 < +∞.

Before delving into the proof, the following remarks on the choice/growth of
the parameters are in order.

Remark 1 We first observe that condition (Gdis2 ) is nothing but a forward (explicit)
discretization of its continuous analogue (G2). In addition, in view of (1), (G3)
equivalently reads

tδ̇(t) ≤ (α− 1)δ(t).

In turn, (9) and (Gdis3 ) are explicit discretizations of (1) and (G3) respectively.

Remark 2 The convergence rate on the objective values in Theorem 4(i) is
O (1/((k + 1)k) with the proviso that

inf
k

(bkh−
βk+1

k
− (βk+1 − βk)) > 0, (10)

which in turn implies (Gdis2 ). If, in addition to (10), we also have infk βk > 0, then
the summability property in Theorem 4(ii) reads

∑
k k(k+ 1)‖∇f(xk+1)‖2 < +∞.

For instance, if βk is non-increasing and bk ≥ c+ βk+1

kh , c > 0, then (10) is in force
with c as a lower-bound on the infimum. In summary, we get O (1/((k + 1)k) under
fairly general assumptions on the growth of the sequences (βk)k∈N and (bk)k∈N.

Let us now exemplify choices of βk and bk that have the appropriate growth
as above and comply with (10) (hence (Gdis2 )) as well as (Gdis3 ).
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• Let us take βk = β > 0 and bk = 1, which is the discrete analogue of the
continuous case 1 considered in Section 2.2 (recall that the continuous version
was analyzed in [12]). Note however that [12] did not study the discrete (algo-
rithmic) case and thus our result is new even for this system. In such a case,
δk = h2(k + 1)(k − β/h) and βk is obviously non-icnreasing. Thus, if α > 3,
then one easily checks that (10) (hence (Gdis2 )) and (Gdis3 ) are in force for all
k ≥ α−2

α−3
β
h + 2

α−3 .
• Consider now the discrete counterpart of case 2 in Section 2.2. Take βk = β > 0

and bk = 1+β/(hk)1. Thus δk = h2(k+1)k. This case was studied in [30] both in
the continuous setting and for the gradient algorithm, but not for the proximal
algorithm. This choice is a special case of the one discussed above since βk is
the constant sequence and c = 1. Thus (10) (hence (Gdis2 )) holds. (Gdis3 ) is also
verified for all k ≥ 2

α−3 as soon as α > 3.

Proof Given x? ∈ argminH f , set

Ek := δk(f(xk)− f(x?)) +
1

2
‖vk‖2 ,

where
vk := (α− 1)(xk − x?) + k(xk − xk−1 + βkh∇f(xk)),

and (δk)k∈N is a positive sequence that will be adjusted. Observe that Ek is nothing
but the discrete analogue of the Lyapunov function (2). Set ∆Ek := Ek+1 − Ek,
i.e.,

∆Ek = (δk+1 − δk)(f(xk+1)− f(x?)) + δk(f(xk+1)− f(xk)) +
1

2
(‖vk+1‖2 − ‖vk‖2)

Let us evaluate the last term of the above expression with the help of the three-
point identity 1

2 ‖vk+1‖2 − 1
2 ‖vk‖

2 = 〈vk+1 − vk, vk+1〉 − 1
2 ‖vk+1 − vk‖2 .

Using successively the definition of vk and (8), we get

vk+1 − vk = (α− 1)(xk+1 − xk) + (k + 1)(xk+1 − xk + βk+1h∇f(xk+1))

−k(xk − xk−1 + βkh∇f(xk))

= α(xk+1 − xk) + k(xk+1 − 2xk + xk−1) + βk+1h∇f(xk+1)

+hk(βk+1∇f(xk+1)− βk∇f(xk))

= [α(xk+1 − xk) + k(xk+1 − 2xk + xk−1) + khβk(∇f(xk+1)−∇f(xk))]

+βk+1h∇f(xk+1) + kh(βk+1 − βk)∇f(xk+1)

= −bkh2k∇f(xk+1) + βk+1h∇f(xk+1) + kh(βk+1 − βk)∇f(xk+1)

= h
(
βk+1 + k(βk+1 − βk)− bkhk

)
∇f(xk+1).

Set shortly Ck = βk+1 + k(βk+1 − βk)− bkhk. We have obtained

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −h

2

2
C2
k‖∇f(xk+1)‖2

〈∇f(xk+1), (α− 1)(xk+1 − x?) + (k + 1)(xk+1 − xk + βk+1h∇f(xk+1))〉

= −h2
(1

2
C2
k − Ckβk+1

)
‖∇f(xk+1)‖2 − (α− 1)hCk〈∇f(xk+1), x? − xk+1〉

−hCk(k + 1)〈∇f(xk+1), xk − xk+1〉.
1 One can even consider the more general case b(t) = 1 + b/(hk), b > 0 for which our

discussion remains true under minor modifications. But we do not pursue this for the sake of
simplicity.
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By virtue of (Gdis2 ), we have

−Ck = bkhk − βk+1 − k(βk+1 − βk) > 0.

Then, in the above expression, the coefficient of ‖∇f(xk+1)‖2 is less or equal than
zero, which gives

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ −(α− 1)hCk

〈
∇f(xk+1), x? − xk+1

〉
−hCk(k + 1) 〈∇f(xk+1), xk − xk+1〉 .

According to the (convex) subdifferential inequality and Ck < 0 (by (Gdis2 )), we
infer

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ −(α− 1)hCk(f(x?)− f(xk+1))

−hCk(k + 1)(f(xk)− f(xk+1)).

Take δk := −hCk(k+ 1) = h
(
bkhk−βk+1− k(βk+1−βk)

)
(k+ 1) so that the terms

f(xk)− f(xk+1) cancel in Ek+1 − Ek. We obtain

Ek+1−Ek ≤
(
δk+1− δk − (α− 1)h(bkhk− βk+1− k(βk+1− βk))

)
(f(xk+1)− f(x?))

Equivalently

Ek+1 − Ek ≤
(
δk+1 − δk − (α− 1)

δk
k + 1

)
(f(xk+1)− f(x?)).

By assumption (Gdis3 ), we have δk+1−δk− (α−1) δk
k+1 ≤ 0. Therefore, the sequence

(Ek)k∈N is non-increasing, which, by definition of Ek, gives, for k ≥ 0

f(xk)−min
H

f ≤ E0

δk
.

By summing the inequalities

Ek+1 − Ek + h
(
h

2
(βk+1 + k(βk+1 − βk)− bkhk)2 + δkβk+1

)
‖∇f(xk+1)‖2 ≤ 0

we finally obtain
∑
k δkβk+1‖∇f(xk+1)‖2 < +∞. ut

3.1.2 Non-smooth case

Let f : H → R∪{+∞} be a proper lower semicontinuous and convex function. We
rely on the basic properties of the Moreau-Yosida regularization. Let fλ be the
Moreau envelope of f of index λ > 0, which is defined by:

fλ(x) = min
z∈H

{
f(z) +

1

2λ
‖z − x‖2

}
, for any x ∈ H.

We recall that fλ is a convex function, whose gradient is λ−1-Lipschitz continuous,
such that argminH fλ = argminH f . The interested reader may refer to [17,19] for
a comprehensive treatment of the Moreau envelope in a Hilbert setting. Since
the set of minimizers is preserved by taking the Moreau envelope, the idea is to
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replace f by fλ in the previous algorithm, and take advantage of the fact that fλ
is continuously differentiable. The Hessian dynamic attached to fλ becomes

ẍ(t) +
α

t
ẋ(t) + β∇2fλ(x(t))ẋ(t) + b(t)∇fλ(x(t)) = 0.

However, we do not really need to work on this system (which requires fλ to be C2),
but with the discretized form which only requires the function to be continuously
differentiable, as is the case of fλ. Then, algorithm (IPAHD) applied to fλ now
reads {

yk = xk +
(

1− α
k+α

)
(xk − xk−1) + β

√
s
(

1− α
k+α

)
∇fλ(xk)

xk+1 = prox k
k+α (β

√
s+sbk)fλ

(yk).

By applying Theorem 4 we obtain that under the assumption (Gdis2 ) and (Gdis3 ),

fλ(xk)−minH f = O
(

1
δk

)
,
∑
k δkβk+1‖∇fλ(xk+1)‖2 < +∞.

Thus, we just need to formulate these results in terms of f and its proximal
mapping. This is straightforward thanks to the following formulae from proximal
calculus [17]:

fλ(x) = f(proxλf (x)) +
1

2λ

∥∥x− proxλf (x))
∥∥2 , (11)

∇fλ(x) =
1

λ

(
x− proxλf (x)

)
, (12)

proxθfλ(x) =
λ

λ+ θ
x+

θ

λ+ θ
prox(λ+θ)f (x). (13)

We obtain the following relaxed inertial proximal algorithm (NS stands for Non-
Smooth):

(IPAHD-NS) :

Set µk := λ(k+α)
λ(k+α)+k(β

√
s+sbk)yk = xk + (1− α

k+α )(xk − xk−1) + β
√
s

λ

(
1− α

k+α

) (
xk − proxλf (xk)

)
xk+1 = µkyk + (1− µk) prox λ

µk
f (yk).

Theorem 5 Let f : H → R ∪ {+∞} be a convex, lower semicontinuous, proper func-

tion. Let the sequence (δk)k∈N as defined in (9), and suppose that the growth conditions

(Gdis2 ) and (Gdis3 ) in Theorem 4 are satisfied. Then, for any sequence (xk)k∈N generated

by (IPAHD-NS) , the following holds

f(proxλf (xk))−min
H

f = O
(

1

δk

)
,
∑
k

δkβk+1

∥∥xk+1 − proxλf (xk+1)
∥∥2 < +∞.
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3.2 Gradient algorithms

Take f a convex function whose gradient is L-Lipschitz continuous. Our analysis is
based on the dynamic (DIN-AVD)

α,β,1+ β
t

considered in Theorem 3 with damping

parameters α ≥ 3, β ≥ 0. Consider the time discretization of (DIN-AVD)
α,β,1+ β

t

1

s
(xk+1 − 2xk + xk−1) +

α

ks
(xk − xk−1) +

β√
s

(∇f(xk)−∇f(xk−1))

+
β

k
√
s
∇f(xk−1) +∇f(yk) = 0,

with yk inspired by Nesterov’s accelerated scheme. We obtain the following scheme:

(IGAHD) : Inertial Gradient Algorithm with Hessian Damping.

Step k:αk = 1− α
k .{

yk = xk + αk(xk − xk−1)− β
√
s (∇f(xk)−∇f(xk−1))− β

√
s

k ∇f(xk−1)

xk+1 = yk − s∇f(yk),

Following [5], set tk+1 = k
α−1 , whence tk = 1 + tk+1αk.

Given x? ∈ argminH f , our Lyapunov analysis is based on the sequence (Ek)k∈N

Ek := t2k(f(xk)− f(x?)) +
1

2s
‖vk‖2 (14)

vk := (xk−1 − x?) + tk

(
xk − xk−1 + β

√
s∇f(xk−1)

)
. (15)

Theorem 6 Let f : H → R be a convex function whose gradient is L-Lipschitz con-

tinuous. Let (xk)k∈N be a sequence generated by algorithm (IGAHD) , where α ≥ 3,

0 ≤ β < 2
√
s and s ≤ 1/L. Then the sequence (Ek)k∈N defined by (14)-(15) is non-

increasing, and the following convergence rates are satisfied:

(i) f(xk)−min
H

f = O
(

1

k2

)
as k → +∞;

(ii) Suppose that β > 0. Then∑
k

k2‖∇f(yk)‖2 < +∞ and
∑
k

k2‖∇f(xk)‖2 < +∞.

Proof We rely on the following reinforced version of the gradient descent lemma
(Lemma 1 in Appendix A.1). Since s ≤ 1

L , and ∇f is L-Lipschitz continuous,

f(y − s∇f(y)) ≤ f(x) + 〈∇f(y), y − x〉 − s

2
‖∇f(y)‖2 − s

2
‖∇f(x)−∇f(y)‖2

for all x, y ∈ H. Let us write it successively at y = yk and x = xk, then at y = yk,
x = x?. According to xk+1 = yk − s∇f(yk) and ∇f(x?) = 0, we get

f(xk+1) ≤ f(xk) + 〈∇f(yk), yk − xk〉 −
s

2
‖∇f(yk)‖2 −

s

2
‖∇f(xk)−∇f(yk)‖2 (16)

f(xk+1) ≤ f(x?) + 〈∇f(yk), yk − x?〉 −
s

2
‖∇f(yk)‖2 −

s

2
‖∇f(yk)‖2. (17)
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Multiplying (16) by tk+1 − 1 ≥ 0, then adding (17), we derive that

tk+1(f(xk+1)− f(x?)) ≤ (tk+1 − 1)(f(xk)− f(x?))

+〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
tk+1‖∇f(yk)‖2.

− s
2

(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2 − s

2
‖∇f(yk)‖2. (18)

Let us multiply (18) by tk+1 to make appear Ek. We obtain

t2k+1(f(xk+1)− f(x?)) ≤ (t2k+1 − tk+1 − t2k)(f(xk)− f(x?)) + t2k(f(xk)− f(x?))

+tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

− s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

Since α ≥ 3 we have t2k+1 − tk+1 − t2k ≤ 0, which gives

t2k+1(f(xk+1 − f(x?)) ≤ t2k(f(xk)− f(x?))

+tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

− s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

According to the definition of Ek, we infer

Ek+1 − Ek ≤ tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

− s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2

+
1

2s
‖vk+1‖2 −

1

2s
‖vk‖2.

Let us compute this last expression with the help of the elementary identity

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2.

By definition of vk, according to (IGAHD) and tk − 1 = tk+1αk, we have

vk+1 − vk = xk − xk−1 + tk+1(xk+1 − xk + β
√
s∇f(xk))

−tk(xk − xk−1 + β
√
s∇f(xk−1))

= tk+1(xk+1 − xk)− (tk − 1)(xk − xk−1) + β
√
s
(
tk+1∇f(xk)− tk∇f(xk−1)

)
= tk+1

(
xk+1 − (xk + αk(xk − xk−1)

)
+ β
√
s
(
tk+1∇f(xk)− tk∇f(xk−1)

)
= tk+1 (xk+1 − yk)− tk+1β

√
s(∇f(xk)−∇f(xk−1))− tk+1

β
√
s

k
∇f(xk−1)

+β
√
s(tk+1∇f(xk)− tk∇f(xk−1))

= tk+1 (xk+1 − yk) + β
√
s

(
tk+1

(
1− 1

k

)
− tk

)
∇f(xk−1)

= tk+1 (xk+1 − yk) = −stk+1∇f(yk).
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Hence

1

2s
‖vk+1‖2 −

1

2s
‖vk‖2 = − s

2
t2k+1‖∇f(yk)‖2

−tk+1

〈
∇f(yk), xk − x? + tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)〉
.

Collecting the above results, we obtain

Ek+1 − Ek ≤ tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 − st2k+1‖∇f(yk)‖2

−tk+1

〈
∇f(yk), xk − x? + tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)〉
− s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

Equivalently

Ek+1 − Ek ≤ tk+1〈∇f(yk), Ak〉 − st2k+1‖∇f(yk)‖2

− s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2,

with

Ak := (tk+1 − 1)(yk − xk) + yk − xk − tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)
= tk+1yk − tk+1xk − tk+1(xk+1 − xk)− tk+1β

√
s∇f(xk)

= tk+1(yk − xk+1)− tk+1β
√
s∇f(xk)

= stk+1∇f(yk)− tk+1β
√
s∇f(xk)

Consequently

Ek+1 − Ek ≤ tk+1〈∇f(yk), stk+1∇f(yk)− tk+1β
√
s∇f(xk)〉

−st2k+1‖∇f(yk)‖2 − s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2

= −t2k+1β
√
s〈∇f(yk), ∇f(xk)〉 − s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2

− s
2
tk+1‖∇f(yk)‖2

= −tk+1Bk,

where

Bk := tk+1β
√
s〈∇f(yk), ∇f(xk)〉+ s

2
(tk+1− 1)‖∇f(xk)−∇f(yk)‖2 +

s

2
‖∇f(yk)‖2.

When β = 0 we have Bk ≥ 0. Let us analyze the sign of Bk in the case β > 0. Set
Y = ∇f(yk), X = ∇f(xk). We have

Bk =
s

2
‖Y ‖2 +

s

2
(tk+1 − 1)‖Y −X‖2 + tk+1β

√
s〈Y,X〉

=
s

2
tk+1‖Y ‖2 +

(
tk+1(β

√
s− s) + s

)
〈Y,X〉+ s

2
(tk+1 − 1)‖X‖2

≥ s

2
tk+1‖Y ‖2 −

(
tk+1(β

√
s− s) + s

)
‖Y ‖‖X‖+

s

2
(tk+1 − 1)‖X‖2.

Elementary algebra gives that the above quadratic form is non-negative when(
tk+1(β

√
s− s) + s

)2 ≤ s2tk+1(tk+1 − 1).
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Recall that tk is of order k. Hence, this inequality is satisfied for k large enough if
(β
√
s−s)2 < s2, which is equivalent to β < 2

√
s. Under this condition Ek+1−Ek ≤

0, which gives conclusion (i). Similar argument gives that for 0 < ε < 2
√
sβ − β2

(such ε exists according to assumption 0 < β < 2
√
s)

Ek+1 − Ek +
1

2
εt2k+1‖∇f(yk)‖2 ≤ 0.

After summation of these inequalities, we obtain conclusion (ii). ut

Remark 3 In [32, Theorem 8], the same convergence rate as in Theorem 6 on
the objective values is obtained for a very different discretization of the system
(DIN-AVD)

α,b
√
s,1+α

√
s

2t

. Their scheme is thus related but quite different from

(IGAHD) . Their claims require also intricate conditions relating (α, b, s, L) to hold
true.

In Theorem 6, the condition β < 2
√
s essentially reveals that in order to pre-

serve acceleration offered by the viscous damping, the geometric damping should
not be too large. It is an open question whether this constraint is a technical
artifact or is fundamental to acceleration. We leave it to a future work.

Remark 4 From
∑
k k

2‖∇f(xk)‖2 < +∞ we immediately infer that for k ≥ 1

inf
i=1,··· ,k

‖∇f(xi)‖2
k∑
i=1

i2 ≤
k∑
i=1

i2‖∇f(xi)‖2 ≤
∑
i∈N

i2‖∇f(xi)‖2 < +∞.

A similar argument holds for yk. Hence

inf
i=1,...,k

‖∇f(xi)‖2 = O
(

1

k3

)
, inf

i=1,...,k
‖∇f(yi)‖2 = O

(
1

k3

)
.

Remark 5 In Theorem 6, the convergence property of the values is expressed ac-
cording to the sequence (xk)k∈N. It is natural to know if a similar result is true
for the sequence (yk)k∈N. This is an open question in the case of Nesterov’s ac-
celerated gradient method and the corresponding FISTA algorithm for structured
minimization [26,18]. In the case of the Hessian-driven damping algorithms, we
give a partial answer to this question. By the classical descent lemma, and the
monotonicity of ∇f we have

f(yk) ≤ f(xk+1) + 〈yk − xk+1,∇f(xk+1)〉+ L

2
‖yk − xk+1‖2

≤ f(xk+1) + 〈yk − xk+1,∇f(yk)〉+ L

2
‖yk − xk+1‖2

According to xk+1 = yk − s∇f(yk) we obtain

f(yk)−min
H

f ≤ f(xk+1)−min
H

f + s‖∇f(yk)‖2 +
s2L

2
‖∇f(yk)‖2.

From Theorem 6 we deduce that

f(yk)−min
H

f ≤ O
(

1

k2

)
+

(
s+

s2L

2

)
‖∇f(yk)‖2 = O

(
1

k2

)
+ o

(
1

k2

)
.
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Remark 6 When f is a proper lower semicontinuous proper function, but not nec-
essarily smooth, we follow the same reasoning as in Section 3.1.2. We consider
minimizing the Moreau envelope fλ of f , whose gradient is 1/λ-Lipschitz contin-
uous, and then apply (IGAHD) to fλ. We omit the details for the sake of brevity.
This observation will be very useful to solve even structured composite problems
as we will describe in Section 6.

4 Inertial dynamics for strongly convex functions

4.1 Smooth case

Recall the classical definition of strong convexity:

Definition 1 A function f : H → R is said to be µ-strongly convex for some µ > 0
if f − µ

2 ‖ · ‖
2 is convex.

For strongly convex functions, a suitable choice of γ and β in (DIN)γ,β pro-
vides exponential decay of the value function (hence of the trajectory), and of the
gradients.

Theorem 7 Suppose that (H) holds where f : H → R is in addition µ-strongly convex

for some µ > 0. Let x(·) : [t0,+∞[→ H be a solution trajectory of

ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0. (19)

Suppose that 0 ≤ β ≤ 1
2
√
µ . Then, the following hold:

(i) for all t ≥ t0

µ

2

∥∥x(t)− x?
∥∥2 ≤ f(x(t))−min

H
f ≤ Ce−

√
µ

2
(t−t0)

where C := f(x(t0))−minH f + µ‖x(t0)− x?‖2 + ‖ẋ(t0) + β∇f(x(t0))‖2.
(ii) There exists some constant C1 > 0 such that, for all t ≥ t0

e−
√
µt
∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ C1e

−
√
µ

2
t.

Moreover,
∫∞
t0
e
√
µ

2
t‖ẋ(t)‖2dt < +∞.

When β = 0, we have f(x(t))−minH f = O
(
e−
√
µt
)

as t → +∞.

Remark 7 When β = 0, Theorem 7 recovers [29, Theorem 2.2]. In the case β > 0, a
result on a related but different dynamical system can be found in [32, Theorem 1]
(their rate is also sligthtly worse than ours). Our gradient estimate is distinctly
new in the literature.
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Proof (i) Let x? be the unique minimizer of f . Define E : [t0,+∞[→ R+ by

E(t) := f(x(t))−min
H

f +
1

2
‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2.

Set v(t) =
√
µ(x(t)− x?) + ẋ(t) + β∇f(x(t)). Derivation of E(·) gives

d

dt
E(t) := 〈∇f(x(t)), ẋ(t)〉+ 〈v(t),√µẋ(t) + ẍ(t) + β∇2f(x(t))ẋ(t)〉.

Using (19), we get

d

dt
E(t) = 〈∇f(x(t)), ẋ(t)〉+ 〈v(t),−√µẋ(t)−∇f(x(t))〉.

After developing and simplification, we obtain

d

dt
E(t) +

√
µ〈∇f(x(t)), x(t)− x?〉+ µ〈x(t)− x?, ẋ(t)〉+√µ‖ẋ(t)‖2

+β
√
µ〈∇f(x(t)), ẋ(t)〉+ β‖∇f(x(t))‖2 = 0.

By strong convexity of f we have

〈∇f(x(t)), x(t)− x?〉 ≥ f(x(t))− f(x?) +
µ

2
‖x(t)− x?‖2.

Thus, combining the last two relations we obtain

d

dt
E(t) +

√
µA ≤ 0,

where (the variable t is omitted to lighten the notation)

A := f(x)−f(x?)+
µ

2
‖x−x?‖2+

√
µ〈x−x?, ẋ〉+‖ẋ‖2+β〈∇f(x), ẋ〉+ β

√
µ
‖∇f(x)‖2

Let us formulate A with E(t).

A = E − 1

2
‖ẋ+ β∇f(x)‖2 −√µ〈x− x?, ẋ+ β∇f(x)〉+√µ〈x− x?, ẋ〉+ ‖ẋ‖2

+β〈∇f(x), ẋ〉+ β
√
µ
‖∇f(x)‖2.

After developing and simplifying, we obtain

d

dt
E(t)+√µ

(
E(t) +

1

2
‖ẋ‖2 +

(
β
√
µ
− β2

2

)
‖∇f(x)‖2 − β√µ〈x− x?,∇f(x)〉

)
≤ 0.

Since 0 ≤ β ≤ 1√
µ , we immediately get β√

µ −
β2

2 ≥
β

2
√
µ . Hence

d

dt
E(t) +

√
µ

(
E(t) +

1

2
‖ẋ‖2 +

β

2
√
µ
‖∇f(x)‖2 − β√µ〈x− x?,∇f(x)〉

)
≤ 0.

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2

(
f(x(t))− f(x?)

)
≥ 1

2
E(t) +

µ

4
‖x(t)− x?‖2.
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By combining the two inequalities above, we obtain

d

dt
E(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 +

√
µB ≤ 0,

where B = µ
4 ‖x(t)− x?‖2 + β

2
√
µ‖∇f(x)‖2 − β√µ‖x− x?‖‖∇f(x)‖.

Set X = ‖x−x?‖, Y = ‖∇f(x)‖. Elementary algebraic computation gives that,
under the condition 0 ≤ β ≤ 1

2
√
µ

µ

4
X2 +

β

2
√
µ
Y 2 − β√µXY ≥ 0.

Hence for 0 ≤ β ≤ 1
2
√
µ

d

dt
E(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤ 0.

By integrating the differential inequality above we obtain

E(t) ≤ E(t0)e−
√
µ

2
(t−t0).

By definition of E(t), we infer

f(x(t))−min
H

f ≤ E(t0)e−
√
µ

2
(t−t0),

and

‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2 ≤ 2E(t0)e−
√
µ

2
(t−t0).

(ii) Set C = 2E(t0)e
√
µ

2
t0 . Developing the above expression, we obtain

µ‖x(t)− x?‖2 + ‖ẋ(t)‖2 + β2‖∇f(x(t))‖2 + 2β
√
µ
〈
x(t)− x?,∇f(x(t))

〉
+
〈
ẋ(t), 2β∇f(x(t)) + 2

√
µ(x(t)− x?)

〉
≤ Ce−

√
µ

2
t.

By convexity of f we have 〈x(t)− x?,∇f(x(t))〉 ≥ f(x(t))− f(x?). Moreover,〈
ẋ(t), 2β∇f(x(t)) + 2

√
µ(x(t)− x?)

〉
=

d

dt

(
2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2

)
.

Combining the above results, we obtain
√
µ[2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2] + β2‖∇f(x(t))‖2

+
d

dt

(
2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2

)
≤ Ce−

√
µ

2
t.

Set Z(t) := 2β(f(x(t))− f(x?)) +
√
µ‖x(t)− x?‖2]. We have

d

dt
Z(t) +

√
µZ(t) + β2‖∇f(x(t))‖2 ≤ Ce−

√
µ

2
t.

By integrating this differential inequality, elementary computation gives

e−
√
µt
∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ Ce−

√
µ

2
t.

Noticing that the integral of e
√
µs over [t0, t] is of order e

√
µt, the above estimate

reflects the fact, as t → +∞, the gradient terms ‖∇f(x(t))‖2 tend to zero at
exponential rate (in average, not pointwise). ut
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Remark 8 Let us justify the choice of γ = 2
√
µ in Theorem 7. Indeed, considering

ẍ(t) + 2γẋ(t) + β∇2f(x(t)) +∇f(x(t)) = 0,

a similar proof to that described above can be performed on the basis of the
Lyapunov function

E(t) := f(x(t))−min
H

f +
1

2
‖γ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2.

Under the conditions γ ≤ √µ and β ≤ µ
2γ3 we obtain the exponential convergence

rate
f(x(t))−min

H
f = O

(
e−

γ
2
t
)

as t → +∞.

Taking γ =
√
µ gives the best convergence rate, and the result of Theorem 7.

4.2 Non-smooth case

Following [2], (DIN)γ,β is equivalent to the first-order systemẋ(t) + β∇f(x(t)) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0;

ẏ(t) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0.
.

This permits to extend (DIN)γ,β to the case of a proper lower semicontinuous con-
vex function f : H → R∪{+∞}. Replacing the gradient of f by its subdifferential,
we obtain its Non-Smooth version :

(DIN-NS)γ,β

ẋ(t) + β∂f(x(t)) +
(
γ − 1

β

)
x(t) + 1

β y(t) 3 0;

ẏ(t) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0.

Most properties of (DIN)γ,β are still valid for this generalized version. To illustrate
it, let us consider the following extension of Theorem 7.

Theorem 8 Suppose that f : H → R∪{+∞} is lower semicontinuous and µ-strongly

convex for some µ > 0. Let x(·) be a trajectory of (DIN-NS)2√µ,β . Suppose that

0 ≤ β ≤ 1
2
√
µ . Then

µ

2

∥∥x(t)− x?
∥∥2 ≤ f(x(t))−min

H
f = O

(
e−
√
µ

2
t

)
as t → +∞,

and

∫ ∞
t0

e

√
µ

2
t‖ẋ(t)‖2dt < +∞.

Proof Let us introduce E : [t0,+∞[→ R+ defined by

E(t) := f(x(t))−min
H

f +
1

2
‖√µ(x(t)− x?)−

(
2
√
µ− 1

β

)
x(t)− 1

β
y(t)‖2,

that will serve as a Lyapunov function. Then, the proof follows the same lines as
that of Theorem 7, with the use of the derivation rule of Brezis [19, Lemme 3.3,
p. 73].
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5 Inertial algorithms for strongly convex functions

We will show in this section that the exponential convergence of Theorem 7 for
the inertial system (19) translates into linear convergence in the algorithmic case
under proper discretization.

5.1 Proximal algorithms

5.1.1 Smooth case

Consider the inertial dynamic (19). Its implicit discretization similar to that per-
formed before gives

1

h2
(xk+1−2xk+xk−1)+

2
√
µ

h
(xk+1−xk)+

β

h
(∇f(xk+1)−∇f(xk))+∇f(xk+1) = 0,

where h is the positive step size. Set s = h2. We obtain the following inertial
proximal algorithm with hessian damping (SC refers to Strongly Convex):

(IPAHD-SC)yk = xk +
(

1− 2
√
µs

1+2
√
µs

)
(xk − xk−1) + β

√
s
(

1− 2
√
µs

1+2
√
µs

)
∇f(xk)

xk+1 = prox β
√
s+s

1+2
√
µs f

(yk).

Theorem 9 Assume that f : H → R is a convex C1 function and µ-strongly convex,

µ > 0, and suppose that

0 ≤ β ≤ 1

2
√
µ

and
√
s ≤ β.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. Then, the sequence (xk)k∈N generated by

the algorithm (IPAHD-SC) obeys, for any k ≥ 1

µ

2

∥∥xk − x?∥∥2 ≤ f(xk)−min
H

f ≤ E1q
k−1,

where E1 = f(x1)− f(x?) + 1
2‖
√
µ(x1 − x?) + 1√

s
(x1 − x0) + β∇f(x1)‖2. Moreover,

the gradients converge exponentially fast to zero: setting θ = 1
1+
√
µs which belongs to

]0, 1[, we have

θk
k−2∑
j=0

θ−j‖∇f(xj)‖2 = O
(
qk
)

as k → +∞.

Remark 9 We are not aware of any result of this kind for such a proximal algorithm.
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Proof Let x? be the unique minimizer of f , and consider the sequence (Ek)k∈N

Ek := f(xk)− f(x?) +
1

2
‖vk‖2,

where vk =
√
µ(xk − x?) + 1√

s
(xk − xk−1) + β∇f(xk).

We will use the following equivalent formulation of the algorithm (IPAHD-SC)

1√
s

(xk+1−2xk+xk−1)+2
√
µ(xk+1−xk)+β(∇f(xk+1)−∇f(xk))+

√
s∇f(xk+1) = 0.

(20)
We have

Ek+1 − Ek = f(xk+1)− f(xk) +
1

2
‖vk+1‖2 −

1

2
‖vk‖2.

Using successively the definition of vk and (20), we get

vk+1 − vk =
√
µ(xk+1 − xk) +

1√
s

(xk+1 − 2xk + xk−1) + β(∇f(xk+1)−∇f(xk))

=
√
µ(xk+1 − xk)− 2

√
µ(xk+1 − xk)−

√
s∇f(xk+1)

= = −√µ(xk+1 − xk)−
√
s∇f(xk+1).

Write shortly Bk =
√
µ(xk+1 − xk) +

√
s∇f(xk+1). We have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2

= −
〈
Bk,
√
µ(xk+1 − x?) +

1√
s

(xk+1 − xk) + β∇f(xk+1)

〉
− 1

2
‖Bk‖2

= −µ
〈
xk+1 − xk, xk+1 − x?

〉
−
√
µ

s
‖xk+1 − xk‖2 − β

√
µ 〈∇f(xk+1), xk+1 − xk〉

−√µs
〈
∇f(xk+1), xk+1 − x?

〉
− 〈∇f(xk+1), xk+1 − xk〉 − β

√
s‖∇f(xk+1)‖2

−1

2
µ‖xk+1 − xk‖2 −

1

2
s‖∇f(xk+1‖2 −

√
µs 〈∇f(xk+1), xk+1 − xk〉

By virtue of strong convexity of f

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
µ

2
‖xk+1 − xk‖2;

f(x?) ≥ f(xk+1) +
〈
∇f(xk+1), x? − xk+1

〉
+
µ

2
‖xk+1 − x?‖2.

Combining the above results, and after dividing by
√
s, we get

1√
s

(Ek+1 − Ek) +
√
µ[f(xk+1)− f(x?) +

µ

2
‖xk+1 − x?‖2]

≤ − µ√
s

〈
xk+1 − xk, xk+1 − x?

〉
−
√
µ

s
‖xk+1 − xk‖2

−β
√
µ

s
〈∇f(xk+1), xk+1 − xk〉 −

µ

2
√
s
‖xk+1 − xk‖2 − β‖∇f(xk+1)‖2

− µ

2
√
s
‖xk+1 − xk‖2 −

1

2

√
s‖∇f(xk+1‖2 −

√
µ 〈∇f(xk+1), xk+1 − xk〉 ,
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which gives, after developing and simplification

1√
s

(Ek+1 − Ek) +
√
µEk+1 − βµ

〈
∇f(xk+1), xk+1 − x?

〉
≤ −

(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 −

(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2

−√µ 〈∇f(xk+1), xk+1 − xk〉 .

According to 0 ≤ β ≤ 1
2
√
µ , we have β − β2√µ

2 ≥ 3β
4 , which, with Cauchy-Schwarz

inequality, gives

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

3β

4
‖∇f(xk+1)‖2

−βµ‖∇f(xk+1)‖‖xk+1 − x?‖ −
√
µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≤ 0.

Let us use again the strong convexity of f to write

Ek+1 ≥
1

2
Ek+1 +

1

2

(
f(xk+1)− f(x?)

)
≥ 1

2
Ek+1 +

µ

4
‖xk+1 − x?‖2.

Combining the two inequalities above, we get

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

√
µ
µ

4
‖xk+1 − x?‖2 +

(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2

+
3β

4
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖ −

√
µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≤ 0.

Let us rearrange the terms as follows

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1

+

(
√
µ
µ

4
‖xk+1 − x?‖2 +

β

2
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖

)
︸ ︷︷ ︸

Term 1

+

((√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

β

4
‖∇f(xk+1)‖2 −√µ‖∇f(xk+1)‖‖xk+1 − xk‖

)
︸ ︷︷ ︸

Term 2

≤ 0

Let us examine the sign of the last two terms in the rhs of inequality above.

Term 1 Set X = ‖xk+1 − x?‖, Y = ‖∇f(xk+1)‖. Elementary algebra gives that

√
µ
µ

4
X2 +

β

2
Y 2 − βµXY ≥ 0,

holds true under the condition 0 ≤ β ≤ 1
2
√
µ . Hence, under this condition

√
µ
µ

4
‖xk+1 − x?‖2 +

β

2
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖ ≥ 0.
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Term 2 Set X = ‖xk+1 − xk‖, Y = ‖∇f(xk+1)‖. Elementary algebra gives(√
µ

2s
+

µ√
s

)
X2 +

β

4
Y 2 −√µXY ≥ 0

holds true under the condition
√
µ

2s + µ√
s
≥ µ

β . Hence, under this condition(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

β

4
‖∇f(xk+1)‖2 −√µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≥ 0.

In turn, the condition
√
µ

2s + µ√
s
≥ µ

β is equivalent to
√
s ≤ β

2

(
1 +

√
1 + 2

β
√
µ

)
.

Clearly, this condition is satisfied if
√
s ≤ β.

Let us put the above results together. We have obtained that, under the con-
ditions 0 ≤ β ≤ 1

2
√
µ and

√
s ≤ β,

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 ≤ 0.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. From this, we infer Ek ≤ qEk−1 which

gives
Ek ≤ E1q

k−1. (21)

Since Ek ≥ f(xk)− f(x?), we finally obtain

f(xk)− f(x?) ≤ E1q
k−1 = O

(
qk
)
.

Let us now estimate the convergence rate of the gradients to zero. According
to the exponential decay of (Ek)k∈N, as given in (21), and by definition of Ek, we
have, for all k ≥ 1

‖√µ(xk − x?) +
1√
s

(xk − xk−1) + β∇f(xk)‖2 ≤ 2Ek ≤ 2E1q
k−1.

After developing, we get

µ‖xk − x?‖2 +
1

s
‖xk − xk−1‖2 + β2‖∇f(xk)‖2 + 2β

√
µ
〈
xk − x?,∇f(xk)

〉
+

1√
s

〈
xk − xk−1, 2β∇f(xk) + 2

√
µ(xk − x?)

〉
≤ 2E1q

k−1.

By convexity of f , we have〈
xk − x?,∇f(xk)

〉
≥ f(xk)− f(x?) and 〈xk − xk−1,∇f(xk)〉 ≥ f(xk)− f(xk−1)

Moreover, 〈xk − xk−1, xk − x?〉 ≥ 1
2‖xk − x

?‖2 − 1
2‖xk−1 − x?‖2.

Combining the above results, we obtain

√
µ
(

2β(f(xk)− f(x?)) +
√
µ
∥∥xk − x?∥∥2)+ β2 ‖∇f(xk)‖2

+
1√
s

(
2β(f(xk)− f(x?)) +

√
µ
∥∥xk − x?∥∥2)

− 1√
s

(
2β(f(xk−1)− f(x?)) +

√
µ
∥∥xk−1 − x?

∥∥2) ≤ 2E1q
k−1.
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Set Zk := 2β(f(xk)− f(x?)) +
√
µ‖xk − x?‖2. We have, for all k ≥ 1

1√
s

(Zk − Zk−1) +
√
µZk + β2‖∇f(xk)‖2 ≤ 2E1q

k−1. (22)

Set θ = 1
1+
√
µs which belongs to ]0, 1[. Equivalently

Zk + θβ2√s‖∇f(xk)‖2 ≤ θZk−1 + 2E1θ
√
sqk−1.

Iterating this linear recursive inequality gives

Zk + θβ2√s
k−2∑
p=0

θp‖∇f(xk−p)‖2 ≤ θk−1Z1 + 2E1θ
√
s

k−2∑
p=0

θpqk−p−1. (23)

Then notice that θ
q =

1+ 1
2

√
µs

1+
√
µs < 1, which gives

k−2∑
p=0

θpqk−p−1 = qk−1
k−2∑
p=0

(
θ

q

)p
≤ 2

(
1 +

1
√
µs

)
qk−1.

Collecting the above results, we obtain

θβ2√s
k−2∑
p=0

θp‖∇f(xk−p)‖2 ≤ θk−1Z1 +
4E1√
µ
qk−1. (24)

Using again the inequality θ < q, and after reindexing, we finally obtain

θk
k−2∑
p=0

θ−j‖∇f(xj)‖2 = O
(
qk
)
.

ut

5.1.2 Non-smooth case

Let f : H → R ∪ {+∞} be a proper, lower semicontinuous and convex function.
We argue as in Section 3.1.2 by replacing f with its Moreau envelope fλ. The
key observation is that the Moreau-Yosida regularization also preserves strong
convexity, though with a different modulus as shown by the following result.

Proposition 1 Suppose that f : H → R ∪ {+∞} is a proper, lower semicontinuous

convex function. Then, for any λ > 0 and µ > 0

f is µ-strongly convex =⇒ fλis strongly convex with modulus
µ

1 + λµ
.

Proof If f is strongly convex with constant µ > 0, we have f = g+ µ
2 ‖ · ‖

2 for some
convex function g. Elementary calculus (see e.g., [17, Exercise 12.6]) gives, with
θ = λ

1+λµ ,

fλ(x) = gθ

(
1

1 + λµ
x

)
+

µ

2(1 + λµ)
‖x‖2.

Since x 7→ gθ

(
1

1+λµ x
)

is convex, the above formula shows that fλ is strongly

convex with constant µ
1+λµ . ut
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According to the expressions (12) and (13), (IPAHD-SC) becomes with θ =

β
√
s+s

1+2
√

µ
1+λµ s

and a =
2
√

µ
1+λµ s

1+2
√

µ
1+λµ s

:

(IPAHD-NS-SC){
yk = xk + (1− a)(xk − xk−1) + β

√
s

λ (1− a)
(
xk − proxλf (xk)

)
xk+1 = λ

λ+θ yk + θ
λ+θ prox(λ+θ)f (yk)

It is a relaxed inertial proximal algorithm whose coefficients are constant. As
a result, its computational burden is equivalent to (actually twice) that of the
classical proximal algorithm. A direct application of the conclusions of Theorem 9
to fλ gives the following statement.

Theorem 10 Suppose that f : H → R∪{+∞} is a proper, lower semicontinuous and

convex function which is µ-strongly convex for some µ > 0. Take λ > 0. Suppose that

0 ≤ β ≤ 1

2

√
λ+

1

µ
and

√
s ≤ β.

Set q =
1

1 + 1
2

√
µ

1+λµs
, which satisfies 0 < q < 1. Then, for any sequence (xk)k∈N

generated by algorithm (IPAHD-NS-SC)∥∥xk − x?∥∥ = O
(
qk/2

)
and f(proxλf (xk))−min

H
f = O

(
qk
)

as k → +∞,

and

‖xk − proxλf (xk)‖2 = O
(
qk
)

as k → +∞.

5.2 Inertial gradient algorithms

Let us embark from the continuous dynamic (19) whose linear convergence rate
was established in Theorem 7. Its explicit time discretization with centered finite
differences for speed and acceleration gives

1

s
(xk+1−2xk+xk−1)+

√
µ
√
s

(xk+1−xk−1)+β
1√
s

(∇f(xk)−∇f(xk−1))+∇f(xk) = 0.

Equivalently,

(xk+1−2xk+xk−1)+
√
µs(xk+1−xk−1)+β

√
s(∇f(xk)−∇f(xk−1))+s∇f(xk) = 0,

(25)
which gives the inertial gradient algorithm with Hessian damping (SC stands for
Strongly Convex):

(IGAHD-SC)

xk+1 = xk +
1−√µs
1+
√
µs (xk − xk−1)− β

√
s

1+
√
µs (∇f(xk)−∇f(xk−1))

− s
1+
√
µs∇f(xk).



Optimization via inertial systems with Hessian damping 29

Let us analyze the linear convergence rate of (IGAHD-SC) .

Theorem 11 Let f : H → R be a C1 and µ-strongly convex function for some µ > 0,

and whose gradient ∇f is L-Lipschitz continuous. Suppose that

β ≤ 1
√
µ

and L ≤ min


√
µ

8β
,

√
µ

2s + µ√
s

2βµ+ 1√
s

+
√
µ
2

 . (26)

Set q =
1

1 + 1
2

√
µs

, which satisfies 0 < q < 1. Then, for any sequence (xk)k∈N gener-

ated by algorithm (IGAHD-SC) , we have∥∥xk − x?∥∥ = O
(
qk/2

)
and f(xk)−min

H
f = O

(
qk
)

as k → +∞.

Moreover, the gradients converge exponentially fast to zero: setting θ = 1
1+
√
µs which

belongs to ]0, 1[, we have

θk
k−2∑
p=0

θ−j‖∇f(xj)‖2 = O
(
qk
)

as k → +∞.

Remark 10

1. (IGAHD-SC) can be seen as an extension of the Nesterov accelerated method
for strongly convex functions that corresponds to the particular case β = 0.
Actually, in this very specific case, (IGAHD-SC) is nothing but the (HBF)
method with stepsize parameter a = s

1+
√
µs and momentum parameter b =

1−√µs
1+
√
µs ; see [28, (2) in Section 3.2]. Thus, if f is also of class C2 at x?, one

can obtain linear convergence of the iterates (xk)k∈N (but not the objective
values) from [28, Theorem 1] under the assumption that s < 4/L (which can
be shown to be weaker than (26) since the latter is equivalent for β = 0 to
sL ≤ (

√
1− c+ c2 − (1− c))2/c ≤ 1, where c = µ/L).

2. In fact, even for β > 0, by lifting the problem to the vector zk =

(
xk − x?
xk−1 − x?

)
as is standard in the (HBF) method, one can write (IGAHD-SC) as

zk+1 =

(
(1 + b)I− (a+ d)∇f2(x?) −bI + d∇f2(x?)

I 0

)
zk + o(zk),

where d = β
√
s

1+
√
µs . Linear convergence of the iterates (xk)k∈N can then be

obtained by studying the spectral properties of the above matrix.
3. For β = 0, Theorem 11 recovers [29, Theorem 3.2], though the author uses a

slightly different discretization, requires only s ≤ 1/L and his convergence rate
is (1 +

√
µs)−1, which is slightly better than ours for this special case. In the

case β > 0, a result on a scheme related but different from (IGAHD-SC) can
be found in [32, Theorem 3] (their rate is also slightly worse than ours). Our
estimate are also new in the literature.
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Proof The proof is based on Lyapunov analysis, and the decrease property at linear
rate of the sequence (Ek)k∈N defined by

Ek := f(xk)− f(x?) +
1

2
‖vk‖2,

where x? is the unique minimizer of f , and

vk =
√
µ(xk−1 − x?) +

1√
s

(xk − xk−1) + β∇f(xk−1).

We have Ek+1 − Ek = f(xk+1) − f(xk) + 1
2‖vk+1‖2 − 1

2‖vk‖
2. Using successively

the definition of vk and (25), we obtain

vk+1 − vk =
√
µ(xk − xk−1) +

1√
s

(xk+1 − 2xk + xk−1) + β(∇f(xk)−∇f(xk−1))

=
1√
s

(
(xk+1 − 2xk + xk−1) +

√
µs(xk − xk−1) + β

√
s(∇f(xk)−∇f(xk−1))

)
=

1√
s

(
− s∇f(xk)−√µs(xk+1 − xk−1) +

√
µs(xk − xk−1))

)
= −√µ(xk+1 − xk)−

√
s∇f(xk).

Since 1
2‖vk+1‖2 − 1

2‖vk‖
2 = 〈vk+1 − vk, vk+1〉 − 1

2‖vk+1 − vk‖2, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −1

2
‖√µ(xk+1 − xk) +

√
s∇f(xk)‖2

−
〈
√
µ(xk+1 − xk) +

√
s∇f(xk),

√
µ(xk − x∗) +

1√
s

(xk+1 − xk) + β∇f(xk)

〉
= −µ

〈
xk+1 − xk, xk − x∗

〉
−
√
µ

s
‖xk+1 − xk‖2 − β

√
µ 〈∇f(xk), xk+1 − xk〉

−√µs
〈
∇f(xk), xk − x∗

〉
− 〈∇f(xk), xk+1 − xk〉 − β

√
s‖∇f(xk)‖2

−1

2
µ‖xk+1 − xk‖2 −

1

2
s‖∇f(xk‖2 −

√
µs 〈∇f(xk), xk+1 − xk〉 .

By strong convexity of f and L-Lipschitz continuity of ∇f we have

f(x?) ≥ f(xk) +
〈
∇f(xk), x? − xk

〉
+
µ

2
‖xk − x?‖2

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
µ

2
‖xk+1 − xk‖2

≥ f(xk+1) + 〈∇f(xk), xk − xk+1〉+ (
µ

2
− L)‖xk+1 − xk‖2.

Combining the results above, and after dividing by
√
s, we get

1√
s

(Ek+1 − Ek) +
√
µ[f(xk+1)− f(x?) +

µ

2
‖xk − x?‖2] +

√
µ(f(xk)− f(xk+1))

≤ − µ√
s

〈
xk+1 − xk, xk − x?

〉
−
√
µ

s
‖xk+1 − xk‖2 − β

√
µ

s
〈∇f(xk), xk+1 − xk〉

+
1√
s

(L− µ

2
)‖xk+1 − xk‖2 −

µ

2
√
s
‖xk+1 − xk‖2

−
(
β +

1

2

√
s

)
‖∇f(xk‖2 −

√
µ 〈∇f(xk), xk+1 − xk〉 .
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Let us make appear Ek

1√
s

(Ek+1 − Ek) +
√
µEk+1 ≤

√
µ 〈∇f(xk), xk+1 − xk〉+

√
µ
L

2
‖xk+1 − xk‖2

+

√
µ

2
‖ 1√

s
(xk+1 − xk) + β∇f(xk)‖2 + µ

〈
xk − x?,

1√
s

(xk+1 − xk) + β∇f(xk)

〉
− µ√

s

〈
xk+1 − xk, xk − x?

〉
−
√
µ

s
‖xk+1 − xk‖2 − β

√
µ

s
〈∇f(xk), xk+1 − xk〉

+
1√
s

(L− µ

2
)‖xk+1 − xk‖2 −

µ

2
√
s
‖xk+1 − xk‖2

−
(
β +

1

2

√
s

)
‖∇f(xk‖2 −

√
µ 〈∇f(xk), xk+1 − xk〉 .

After developing and simplification, we get

1√
s

(Ek+1 − Ek) +
√
µEk+1 ≤ −

(√
µ

2s
+

µ√
s
− L

(
1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

−
(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2 + βµ

〈
∇f(xk), xk − x?

〉
.

Let us majorize this last term by using the Lipschitz continuity of ∇f〈
∇f(xk), xk − x?

〉
=
〈
∇f(xk)−∇f(x?), xk − x?

〉
≤ L‖xk − x?‖2

≤ 2L‖xk+1 − x?‖2 + 2L‖xk+1 − xk‖2.

Therefore

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

+

(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2 − 2βµL‖xk+1 − x?‖2 ≤ 0.

According to 0 ≤ β ≤ 1√
µ , we have β − β2√µ

2 ≥ β
2 , which gives

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

+
β

2
‖∇f(xk+1)‖2 − 2βµL‖xk+1 − x?‖2 ≤ 0.

Let us use again the strong convexity of f to write

Ek+1 ≥
1

2
Ek+1 +

1

2

(
f(xk+1)− f(x?)

)
≥ 1

2
Ek+1 +

µ

4
‖xk+1 − x?‖2.

Combining the two above relations we get

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

(√
µ
µ

4
− 2βµL

)
‖xk+1 − x?‖2 +(√

µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2 +

β

2
‖∇f(xk+1)‖2 ≤ 0
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Let us examine the sign of the above quantities: Under the condition L ≤
√
µ

8β we

have
√
µµ4 − 2βµL ≥ 0. Under the condition L ≤

√
µ

2s + µ√
s

2βµ+ 1√
s
+
√
µ

2

we have
√
µ

2s + µ√
s
−

L
(

2βµ+ 1√
s

+
√
µ
2

)
≥ 0. Therefore, under the above conditions

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

β

2
‖∇f(xk+1)‖2 ≤ 0.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. By a similar argument as in Theorem 9

Ek ≤ E1q
k−1.

According to the definition of Ek ≥ f(xk)− f(x?), we finally obtain

f(xk)− f(x?) = O
(
qk
)
,

and the linear convergence of xk to x? and that of the gradients to zero. ut

6 Numerical results

Here, we illustrate our results on the composite problem on H = Rn,

min
x∈Rn

{
f(x) :=

1

2
‖y −Ax‖2 + g(x)

}
, (RLS)

where A is a linear operator from Rn to Rm, m ≤ n, g : Rn → R∪{+∞} is a proper
lsc convex function which acts as a regularizer. Problem (RLS) is extremely popu-
lar in a variety of fields ranging from inverse problems in signal/image processing,
to machine learning and statistics. Typical examples of g include the `1 norm
(Lasso), the `1 − `2 norm (group Lasso), the total variation, or the nuclear norm
(the `1 norm of the singular values of x ∈ RN×N identified with a vector in Rn
with n = N2). To avoid trivialities, we assume that the set of minimizers of (RLS)
is non-empty.

Though (RLS) is a composite non-smooth problem, it fits perfectly well into
our framework. Indeed, the key idea is to appropriately choose the metric. For
a symmetric positive definite matrix S ∈ Rn×n, denote the scalar product in the
metric S as 〈S·, ·〉 and the corresponding norm as ‖·‖S . When S = I, then we simply
use the shorthand notation for the Euclidean scalar product 〈·, ·〉 and norm ‖·‖.
For a proper convex lsc function h, we denote hS and proxSh its Moreau envelope
and proximal mapping in the metric S, i.e.

hS(x) = min
z∈Rn

1

2
‖z − x‖2S + h(z), proxSh(x) = argminz∈Rn

1

2
‖z − x‖2S + h(z).

Similarly, when S = I, we drop S in the above notation.
Let M = s−1I −A∗A. With the proviso that 0 < s ‖A‖2 < 1, M is a symmetric

positive definite matrix. It can be easily shown (we provide a proof in Appendix A.2
for completeness; see also the discussion in [22, Section 4.6]), that the proximal
mapping of f as defined in (RLS) in the metric M is

proxMf (x) = proxsg(x+ sA∗(y −Ax)), (27)
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which is nothing but the forward-backward fixed-point operator for the objective
in (RLS). Moreover, fM is a continuously differentiable convex function whose
gradient (again in the metric M) is given by the standard identity

∇fM (x) = x− proxMf (x),

and ‖∇fM (x)−∇fM (z)‖M ≤ ‖x− z‖M , i.e. ∇fM is Lipschitz continuous in the
metric M . In addition, a standard argument shows that

argminH f = Fix(proxMf ) = argminH fM .

We are then in position to solve (RLS) by simply applying (IGAHD) (see Sec-
tion 3.2) to fM . We infer from Theorem 6 and properties of fM that

f(proxMf (xk))−min
Rn

f = O(k−2).

(IGAHD) and FISTA (i.e. (IGAHD) with β = 0) were applied to fM with four
instances of g: `1 norm, `1 − `2 norm, the total variation, and the nuclear norm.
The results are depicted in Figure 3. One can clearly see that the convergence
profiles observed for both algorithms agree with the predicted rate. Moreover,
(IGAHD) exhibits, as expected, less oscillations than FISTA, and eventually con-
verges faster.

7 Conclusion, Perspectives

As a guideline to our study, the inertial dynamics with Hessian driven damping
give rise to a new class of first-order algorithms for convex optimization. While
retaining the fast convergence of the function values reminiscent of the Nesterov
accelerated algorithm, they benefit from additional favorable properties among
which the most important are:

• fast convergence of gradients towards zero;
• global convergence of the iterates to optimal solutions;
• extension to the non-smooth setting;
• acceleration via time scaling factors.

This article contains the core of our study with a particular focus on the gradient
and proximal methods. The results thus obtained pave the way to new research
avenues. For instance:

• as initiated in Section 6, apply these results to structured composite optimiza-
tion problems beyond (RLS) and develop corresponding splitting algorithms;

• with the additional gradient estimates, we can expect the restart method to
work better with the presence of the Hessian damping term;

• deepen the link between our study and the Newton and Levenberg-Marquardt
dynamics and algorithms (e.g., [13]), and with the Ravine method [23].

• the inertial dynamic with Hessian driven damping goes well with tame anal-
ysis and Kurdyka-Lojasiewicz property [2], suggesting that the corresponding
algorithms be developed in a non-convex (or even non-smooth) setting.



34 H. Attouch, Z. Chbani, J. Fadili, H. Riahi

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

Fig. 3 Evolution of f(proxMf (xk)) − minRn f , where xk is the iterate of either (IGAHD) or

FISTA, when solving (RLS) with different regularizers g.

A Auxiliary results

A.1 Extended descent lemma

Lemma 1 Let f : H → R be a convex function whose gradient is L-Lipschitz continuous. Let
s ∈]0, 1/L]. Then for all (x, y) ∈ H2, we have

f(y − s∇f(y)) ≤ f(x) + 〈∇f(y), y − x〉 −
s

2
‖∇f(y)‖2 −

s

2
‖∇f(x)−∇f(y)‖2. (28)

Proof Denote y+ = y − s∇f(y). By the standard descent lemma applied to y+ and y, and
since sL ≤ 1 we have

f(y+) ≤ f(y)−
s

2
(2− Ls) ‖∇f(y)‖2 ≤ f(y)−

s

2
‖∇f(y)‖2. (29)

We now argue by duality between strong convexity and Lipschitz continuity of the gradient of
a convex function. Indeed, using Fenchel identity, we have

f(y) = 〈∇f(y), y〉 − f∗(∇f(y)).

L-Lipschitz continuity of the gradient of f is equivalent to 1/L-strong convexity of its conjugate
f∗. This together with the fact that (∇f)−1 = ∂f∗ gives for all (x, y) ∈ H2,

f∗(∇f(y)) ≥ f∗(∇f(x)) + 〈x, ∇f(y)−∇f(x)〉+
1

2L
‖∇f(x)−∇f(y)‖2 .
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Inserting this inequality into the Fenchel identity above yields

f(y) ≤ −f∗(∇f(x)) + 〈∇f(y), y〉 − 〈x, ∇f(y)−∇f(x)〉 −
1

2L
‖∇f(x)−∇f(y)‖2

= −f∗(∇f(x)) + 〈x, ∇f(x)〉+ 〈∇f(y), y − x〉 −
1

2L
‖∇f(x)−∇f(y)‖2

= f(x) + 〈∇f(y), y − x〉 −
1

2L
‖∇f(x)−∇f(y)‖2

≤ f(x) + 〈∇f(y), y − x〉 −
s

2
‖∇f(x)−∇f(y)‖2 .

Inserting the last bound into (29) completes the proof.

A.2 Proof of (27)

Proof We have

proxMf (x) = argminz∈Rn
1

2
‖z − x‖2M + f(z)

= argminz∈Rn
1

2s
‖z − x‖2 −

1

2
‖A(z − x)‖2 +

1

2
‖y −Az‖2 + g(z).

By the Pythagoras relation, we then get

proxMf (x) = argminz∈Rn
1

2s
‖z − x‖2 +

1

2
‖y −Ax‖2 − 〈A(x− z), Ax− y〉+ g(z)

= argminz∈Rn
1

2s
‖z − x‖2 − 〈z − x, A∗ (y −Ax)〉+ g(z)

= argminz∈Rn
1

2s
‖z − (x− sA∗ (Ax− y))‖2 + g(z)

= proxsg (x− sA∗ (Ax− y)) .

A.3 Closed-form solutions of (DIN-AVD)α,β,b for quadratic functions

We here provide the closed form solutions to (DIN-AVD)α,β,b for the quadratic objective
f : Rn → 〈Ax, x〉, where A is a symmetric positive definite matrix. The case of a semidefinite
positive matrix A can be treated similarly by restricting the analysis to ker(A)>. Projecting
(DIN-AVD)α,β,b on the eigenspace of A, one has to solve n independent one-dimensional
ODEs of the form

ẍi(t) +
(α
t

+ β(t)λi

)
ẋi(t) + λib(t)xi(t) = 0, i = 1, . . . , n.

where λi > 0 is an eigenvalue of A. In the following, we drop the subscript i.

Case β(t) ≡ β, b(t) = b+ γ/t, β ≥ 0, b > 0, γ ≥ 0: The ODE reads

ẍ(t) +
(α
t

+ βλ
)
ẋ(t) + λ

(
b+

γ

t

)
x(t) = 0. (30)

• If β2λ2 6= 4bλ: set

ξ =
√
β2λ2 − 4bλ, κ = λ

γ − αβ/2
ξ

, σ = (α− 1)/2.

Using the relationship between the Whitaker functions and the Kummer’s confluent hy-
pergeometric functions M and U , see [16], the solution to (30) can be shown to take the
form

x(t) = ξα/2e−(βλ+ξ)t/2 [c1M(α/2− κ, α, ξt) + c2U(α/2− κ, α, ξt)] ,
where c1 and c2 are constants given by the initial conditions.
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• If β2λ2 = 4bλ: set ζ = 2
√
λ (γ − αβ/2). The solution to (30) takes the form

x(t) = t−(α−1)/2e−βλt/2
[
c1J(α−1)/2(ζ

√
t) + c2Y(α−1)/2(ζ

√
t)
]
,

where Jν and Yν are the Bessel functions of the first and second kind.

When β > 0, one can clearly see the exponential decrease forced by the Hessian. From the
asymptotic expansions of M , U , Jν and Yν for large t, straightforward computations provide
the behaviour of |x(t)| for large t as follows:

• If β2λ2 > 4bλ, we have

|x(t)| = O
(
t−

α
2
+|κ|e−

βλ−ξ
2

t
)

= O
(
e
− 2b
β
t−(α2 −|κ|) log(t)

)
.

• If β2λ2 < 4bλ, whence ξ ∈ iR+
∗ and κ ∈ iR, we have

|x(t)| = O
(
t−

α
2 e−

βλ
2
t
)
.

• If β2λ2 = 4bλ, we have

|x(t)| = O
(
t−

2α−1
4 e−

βλ
2
t
)
.

Case β(t) = tβ, b(t) = ctβ−1, β ≥ 0, c > 0: The ODE reads now

ẍ(t) +
(α
t

+ tβλ
)
ẋ(t) + cλtβ−1x(t) = 0.

Let us make the change of variable t := τ
1

β+1 . Let y(τ) := x
(
τ

1
β+1

)
. By the standard

derivation chain rule, it is straightforward to show that y obeys the ODE

ÿ(τ) +

(
α+ β

(1 + β)τ
+

λ

1 + β

)
ẏ(τ) +

cλ

(1 + β)2τ
y(τ) = 0.

It is clear that this is a special case of (30). Since β and λ > 0, set

ξ =
λ

1 + β
, κ = −

α+ β − c
1 + β

, σ =
α+ β

2(1 + β)
−

1

2
.

It follows from the first case above that

x(t) = ξσ+1/2e
− λτ

1+β

[
c1M

(
σ − κ+ 1/2,

α+ β

1 + β
, ξτ

)
+ c2U

(
σ − κ+ 1/2,

α+ β

1 + β
, ξτ

)]
.

Asymptotic estimates can also be derived similarly to above. We omit the details for the sake
of brevity.
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2. F. Álvarez, H. Attouch, J. Bolte, P. Redont, A second-order gradient-like dissipative
dynamical system with Hessian-driven damping. Application to optimization and mechan-
ics, J. Math. Pures Appl., 81 (2002), No. 8, pp. 747–779.

3. V. Apidopoulos, J.-F. Aujol, Ch. Dossal, Convergence rate of inertial Forward-
Backward algorithm beyond Nesterov’s rule, Math. Program. Ser. B., 180 (2020), pp. 137-
?156.

4. H. Attouch, A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-
dependent viscosity, J. Differential Equations, 263 (2017), pp. 5412-5458.



Optimization via inertial systems with Hessian damping 37

5. H. Attouch, A. Cabot, Convergence rates of inertial forward-backward algorithms,
SIAM J. Optim., 28 (1) (2018), pp. 849–874.

6. H. Attouch, A. Cabot, Z. Chbani, H. Riahi, Rate of convergence of inertial gradi-
ent dynamics with time-dependent viscous damping coefficient, Evolution Equations and
Control Theory, 7 (2018), No. 3, pp. 353–371.

7. H. Attouch, Z. Chbani, H. Riahi, Fast proximal methods via time scaling of damped
inertial dynamics, SIAM J. Optim., 29 (2019), No. 3, pp. 2227?-2256.

8. H. Attouch, Z. Chbani, J. Peypouquet, P. Redont, Fast convergence of inertial dy-
namics and algorithms with asymptotic vanishing viscosity, Math. Program. Ser. B., 168
(2018), pp. 123–175.

9. H. Attouch, Z. Chbani, H. Riahi, Rate of convergence of the Nesterov accelerated gra-
dient method in the subcritical case α ≤ 3, ESAIM Control Optim. Calc. Var., 25 (2019),
pp. 2-35.

10. H. Attouch, J. Peypouquet, The rate of convergence of Nesterov’s accelerated forward-
backward method is actually faster than 1/k2, SIAM J. Optim., 26 (2016), No. 3, pp. 1824–
1834.

11. H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forward-
backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), No. 1, pp. 232–
256.

12. H. Attouch, J. Peypouquet, P. Redont, Fast convex minimization via inertial dynam-
ics with Hessian driven damping, J. Differential Equations, 261, No. 10, (2016), pp. 5734–
5783.

13. H. Attouch, B. F. Svaiter, A continuous dynamical Newton-Like approach to solving
monotone inclusions, SIAM J. Control Optim., 49 (2011), No. 2, pp. 574–598.
Global convergence of a closed-loop regularized Newton method for solving monotone in-
clusions in Hilbert spaces, J. Optim. Theory Appl., 157 (2013), No. 3, pp. 624–650.

14. J.-F. Aujol, Ch. Dossal, Stability of over-relaxations for the Forward-Backward algo-
rithm, application to FISTA, SIAM J. Optim., 25 (2015), No. 4, pp. 2408–2433.

15. J.-F. Aujol, Ch. Dossal, Optimal rate of convergence of an ODE associated to the Fast
Gradient Descent schemes for b > 0, 2017, https://hal.inria.fr/hal-01547251v2.

16. H. Bateman, Higher transcendental functions, McGraw-Hill, Vol. 1, (1953).
17. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert spaces, CMS Books in Mathematics, Springer, (2011).
18. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear in-

verse problems, SIAM J. Imaging Sci., 2 (2009), No. 1, pp. 183–202.
19. H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations
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