Texto completo
|
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) |
ORCID: https://orcid.org/0000-0001-7109-2668, Robles Forcada, Víctor
ORCID: https://orcid.org/0000-0003-3937-2269 and Larrañaga Múgica, Pedro María
ORCID: https://orcid.org/0000-0003-0652-9872
(2014).
Semi-supervised projected model-based clustering.
"Data Mining and Knowledge Discovery", v. 28
(n. 4);
pp. 882-917.
ISSN 1942-4795.
https://doi.org/10.1007/s10618-013-0323-0.
| Título: | Semi-supervised projected model-based clustering |
|---|---|
| Autor/es: |
|
| Tipo de Documento: | Artículo |
| Título de Revista/Publicación: | Data Mining and Knowledge Discovery |
| Fecha: | 2014 |
| ISSN: | 1942-4795 |
| Volumen: | 28 |
| Número: | 4 |
| Materias: | |
| ODS: | |
| Palabras Clave Informales: | Clustering, Subspaces, Semi-supervised, Model-based, Partially labeled data |
| Escuela: | E.T.S. de Ingenieros Informáticos (UPM) |
| Departamento: | Inteligencia Artificial |
| Licencias Creative Commons: | Reconocimiento - Sin obra derivada - No comercial |
|
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) |
We present an adaptation of model-based clustering for partially labeled data, that is capable of finding hidden cluster labels. All the originally known and discoverable clusters are represented using localized feature subset selections (subspaces), obtaining clusters unable to be discovered by global feature subset selection. The semi-supervised projected model-based clustering algorithm (SeSProC) also includes a novel model selection approach, using a greedy forward search to estimate the final number of clusters. The quality of SeSProC is assessed using synthetic data, demonstrating its effectiveness, under different data conditions, not only at classifying instances with known labels, but also at discovering completely hidden clusters in different subspaces. Besides, SeSProC also outperforms three related baseline algorithms in most scenarios using synthetic and real data sets.
| ID de Registro: | 72761 |
|---|---|
| Identificador DC: | https://oa.upm.es/72761/ |
| Identificador OAI: | oai:oa.upm.es:72761 |
| URL Portal Científico: | https://portalcientifico.upm.es/es/ipublic/item/9170939 |
| Identificador DOI: | 10.1007/s10618-013-0323-0 |
| URL Oficial: | https://link.springer.com/article/10.1007/s10618-0... |
| Depositado por: | Biblioteca Facultad de Informatica |
| Depositado el: | 03 Mar 2023 12:26 |
| Ultima Modificación: | 12 Nov 2025 00:00 |
Publicar en el Archivo Digital desde el Portal Científico